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Do gravitational waves carry energy-momentum and
angular momentum?
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Abstract. We show that gravitational waves which pOssess a non-vanishing Riemann tensor

Rikim # 0 always carry eénergy-momentum and angular momentum. Our proof uses canonicyl
superenergy and supermomentum tensors for the gravitational field.
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1 Introduction

In General Relativity (GR) the gravitational field | W does not possess any
€nergy-momentum tensor, Instead, it only possesses the so-called “energy-mo-
mentum pseudotensors”. In fact, this is a consequence of the Einstein Equiva-
lence Principle (EEP)'. Because of that, many authors [1-5] put in doubt the
reality of the énergy-momentum and the angular momentum transfer by gravita-

for the majority of exact solutions of the vacuum Einstein field equations which
Tepresent gravitational waves, energy-momentum pseudotensors globally vanish
in certain coordinate Systems. In consequence, these pseudotensors give “no
gravitational energy and no gravitational energy flux”, Some other authors [1,3]
argue that the vanishing of the components 1% (or ,4*) of the gravitational
énergy-momentum pseudotensor g* (or o1*) ‘may be treated as a coordinate
condition coupled to the Einstein equations and yield (in special coordinates)
“global vanishing of the pure gravitational energy and the pure gravitational
energy flux”. -

However, such conclusions are Physically incorrect. Firstly, these authors ne-
glect an important role of the four-velocity & (V-7=1) of an observer O in the
definition of the energy density ¢ and the energy flux P' of the field. Namely.
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] Following R. Penrose [6], many authors have considered the so-called quasilocal energy-mo-
mentum in GR [7-14]. However, recent investigations [15—18] have shown that these quantities
are by no means better than the old energy-momentum complexes and pseudotensors,
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server are

¢ = T*ve = Tyv'oX , (1)

P = {é;c — v') T“w, (2)
in contrast to

e=T% Po= T (3)
From now on we use the notation in which i k,/,...=0,1,2,3; a,,y.6,... =1,2,3,

and T are the components of the energy-momentum tensor. In fact 7% and 7%
give the energy density ¢ and the energy flux P for an observer O provided in the

. . 2 i a8 . . B
global coordinates applied, one has? ' = e ’= —Sﬂ—\/ﬁ. This is also true for the

gravitational energy-momentum pseudotensor ,r* (or z4%). In consequence, even if
globally in a chosen system of coordinates ,/* = 0 (or ,4* = 0), then, as one can
see easily, not for all observers ¢ = P' = (), it rather depends on the four-velocity 7
of the observer O. Moreover, a coordinate condition of the kind ;% =0 (or
olo* = 0) is not sufficient for the whole variety of the gravitational energy-momentum
pseudotensors. In fact, we need a different coordinate condition for every gravita-
tional energy-momentum pseudotensor.

Secondly, and most importantly, these authors forget that gravitational energy-
momentum (and gravitational angular momentum) pseudotensors, as functions of
the Levi-Civita connection coefficients,” describe the energy-momentum of the to-
tal gravitational field, which is a combination of the real gravitational field (for
which Rium # 0) and the inertial force field (for which Ry, = 0). The inertial
force field is generated by a suitably chosen system of coordinates. This is also a
consequence of the EEP.

Thus, if in some coordinate systems ™ or (%) (or only ;% or ,1*) globally
vanish, this does not mean that in these systems there is no pure gravitational en-
ergy and energy flux.* Simply, it just means that in such coordinate systems the
energy and the energy flux of the real gravitational field cancel with the energy and
the energy flux of the inertial force field.> The energy and the energy-momentum
flux (as well as the angular momentum) of the real gravitational field which has
Rikim # 0 always exist and do not vanish. In order to show this, one can use the
canonical superenergy (and the canonical angular supermomentum) tensors® for the
gravitational field [19—23].

The canonical superenergy tensor ,S;* and the canonical angular supermomen-
tum tensor ,§*' = (—), 5% are constructed in such a way that they extract covariant
information about the real gravitational field which+s hidden in the canonical en-

? This means that the observer O is at rest with respect to a chosen coordinate system.

3 Physically, this connection plays the role of the total gravitational field strengths.

‘ Even if we confine ourselves to those observers which are at rest in a chosen global coordi-
nate system and for whom 1™ (orgt") is the “energy density” and ,1* (or ,1,°) gives the “energy
flux”,

° Energy-momentum of the inertial force field gives contribution to energy-momentum pseudo-
tensors.

® Or other superenergy and angular supermomentum tensors.
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érgy-momentum and the canonical angular momentum pseudotensors. These The
superenergy and angular supermomentum tensors are obtained from suitable gray. tion
itational pseudotensors by some kind of averaging and they are functions of the
curvature tensor and its covariant derivatives only. Thus, they truly describe only
the real gravitational field, which has Rgn # 0. togeth
The paper is organized as follows. In Section II we shortly remind ourselves of The
canonical superenergy and supermomentum tensors for the gravitational field ip
GR. In Section III we briefly review other definitions of superenergy tensors, and
in Section IV we apply the canonical superenergy and supermomentum tensors to Sing
the analysis of the gravitational waves. Finally, in Section V we give some conclud- write: 1
ing remarks. e wil
- If 7,
2 Canonical superenergy tensor and canonical angular supermomentum tensor then w
We briefly remind here a general definition of the superenergy tensor S,°(P) of
the gravitational field and the matter field. A hat «
In the normal coordinates NC(P) (see e.g. [24-26]), we define [19—23] Usin
" . the loc
I [T0®0) - T®(P)] a2
Sa)®(P) := (-) lim - (4)
QP I/Zb[ o(P;y) dQ2 The las
where For 1
Tw ™) = TA(y) ey (y) €2 (), | () | ergy-m
T (P) := TH(P) é{yel’ (P) = T, (P) (6)
are the so-called physical or tetrad components of the pseudotensor (or tensor)
field T/*(y) which describes an energy-momentum, {y'} are the normal coordi-
nates, e{‘) (y),ef’](y) are an orthonormal tetrad €@(P)=0. and its dual
ef’(P) = &} parallelly propagated along geodesics through P (P = an origin of the
NC(P)), and
: as T/ i
el (7)€ (y) = 8b. Y
We take as Q a sufficiently small ball (centered at P)
_)’02 +y12 +y22 +y32 < Rz , (8) where
which for an auxiliary positive-definite metric 4k = 2igk — g, can be given as
hay'y* < R?. (9)
An observer O is at rest at the beginning P of the used normal coordinates NC(P)
and its four-velocity is v/,
Following Synge [27] we have introduced the two-point world function o(P;y)
oy} 0F - ¥ -2 - ). (10)  ang

The symbol = means that an equation is valid only in special coordinates.
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T‘he world function o(P;y) can covariantly be defined by the eikonal-like equa-

Ton

g% 8i0 o =20, (11)
%ﬁ?’with o(P, P) =0, §o(P, P) =0.
e ball Q can be also given by the inequality
h* 8,0 o < R?. (12)

*
ance the tetrad components and normal components are equal at P, we will U‘Hh

¢ the components of any quantity attached to P without tetrad brackets, e.g., we
Will write S,”(P) instead of S,®)(P) and so on.

H T}* are the components of a symmetric energy-momentum tensor of matter, ‘then
| we get from (4)

mSab(P) == dmnvfmvn]fab- (]3)

ﬂ:t over a quantity denotes a value at P.

sing the four-velocity vector 7 of a fictitious observer O being at rest at P and ‘HLQ
local metric = 5 one can write (13) in a covariant way as

m mSab(P; T?,J = (21»’!?':‘”1 = gimj V{Iv,n)f‘ab . (14)
VTast formula gives the canonical superenergy tensor for matter.

For the gravitational field I}, = { «)» Substitution of the canonical Einstein en-
-‘momentum pseudotensor for the gravitational field
4

'('"rf'k - 16;6 {éf‘gmf(rimr;, B r;ﬂ‘rif)
. 1
t8 [rfm ) [[‘g,gfp - p;'!gkr) Bms
]
a nn e -5 O+ éﬁ,fi;)] } (15)
\q;-({gives
¢5a"(Pyo) = (20'9™ — ™) g W B, | " (16)
Where
2a 1 .
!:‘Wabfm — _6‘ I:Bbalm oF Pbalm ‘*5 égRukm(Rijkt' < 2 Rikj!)
+ 2000 EgE¥ my — 32 Bt B pmy + 2R e Y m) | (17)
c* 1
162G 2y’ e
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is the modified energy-momentum of matter. On the other hand,
Bba;m — 2Rbikam-Hm} —% 6:R§k,¢chm (20)

are the components of the Bel-Robinson tensor (see eg. [30, 59] and references
cited therein) while

Pbagm = ZRbik(”ngjrm} s % fs:Rijk!Rfkjm g (2]}
We call ;S,2(P;+/) the canonical Superenergy tensor for the gravitational field.” Ip
vacuum ,S,°(P; ') takes a simpler form
8a o ym  am [gb0) 1 b 5itkp)
S (Pif) = 9 '™ - &™) (R yRaiapmy — 5 o R (NRl'kp|m}J (22)

and the quadratic form ,S,(P; ') v*1?, where 1"v, = 1, is positive-definite.
We define the canomical angular supermomentum tensor in analogy to the cano-
nical superenergy tensor. Namely, we define an average

J‘ [M:a}u-nrz{y) = Mta)i'blfr)(p)] do

SOPO(P) = S%(P) := (-) lim, 2— 172 [ oP.y) 48 (23)
where, as formerly, Q
MOPO(y) .= M¥(y) e (y) e (y) e (y), (24)
M@®P(P) .= M¥(P) e (P) el (P) ) (P)
= MY(P) 56,67 = M*(P) (25)

are physical (or tetrad) components of the field M*/(y) = (-) M*!(y) describing
the angular momentum.

As M*(y) = (=) M*( y) for matter, we take the material part of the Bergmann-
Thomson angular momentum complex in GR [28, 29] (See also Appendix)
srM™ = (=) prM*! .5r M™ | = 0,

This material parts reads as

M (y) = Vgl (YT¥ - y*1¥), (26)
where 7% = TX are the components of the symmetric energy-momentum tensor of
matter® and {y’} denote normal coordinates.

The Eq. (26) gives us the fotal angular momentum densities for matter (orbital
and spin) because the dynamical tensor 7% = T% is obtained from the canonical
tensor by means of the Belinfante symmetrization procedure (and, therefore, in-
cludes the material spin).

For the gravitational field, as «M*(y), we prefer the expression most closely
related to the Einstein canonical energy-momentum complex (See Appendix). We

7 We must emphasize that the canonical superenergy tensor .S,”(P:v') is originally a function
of the curvature components Ry, and tensor Ricci components R;. We have eliminated all the
Ricci components by using of the Einstein equations Ry = yEj.

® This tensor is the source in the Einstein equations,
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0
Wil call this expression canonical, too. Namely, as ,M*(y) we take the formula
%jven by Bergmann and Thomson [28, 29] (see also Appendix)

MM (y) =p UK (y) U () + /gl (Vart™ — yprt"), (27)
Where
pUK .= gim 17 [ki] (28)
and rU,*" are the Freud superpotentials, and
k
‘ BTI“ - E;'Iii s 3m| T F_Umifpl (29)
g

\%

the Bergmann-Thomson gravitational energy-momentum pseudotensor (28, 29].

The Eq. (27) is the gravitational part of the Bergmann-Thomson angular momen-
E‘m complex prM* .= M* + M* which was first introduced in (28].

One can interpret Eq. (27) as the sum of a spinorial part

Sikn‘ =g Uf'{!d] —-F Uk[i!] (30)
aind an orbital part

O = Vgl (¥gr™ — yhrt") (31)
°|:the gravitational angular momentum densities. '

Substituting (26) into (23) we get the canonical angular supermomentum tensor
r matter

S (Pof) = 22" — &) V, T - 2% - §) v, 7). (32)

oy

On the other hand, substitution of (27) into (23) gives the gravitational canom'eq_L

I angular supermomentum tensor®
e (Pit)) = aiPd — &) [x(8"8" — 8%8”) V(uEpm
+28"V(R®,9),) — 28"V R4,
+2/38°(V,R (5 — 2V o Ep)
—2/38(V,R () — 2V Ep). (33)

jn vacuum, Ty =0= Ey := Ty — 1/2g4T =0, and thewgravitational canonical
gular supermomentum tensor ;§%°¢(P;v!) = (—) ,§b(P; /) simplifies to

¢S (P;Y) = 2a(20P — @) VR, - g"V,R@9,]. (34)

His interesting thafﬂ!orbital part 0% = \/Ig[ (yirt* — yk ") of the M™ gives

WM contribution  to the tensor ,S®(P;+/). Onmly a spinorial part

== UM — UKl gives a non-zero contribution to this tensor. Also, notice that

. canonical angular supermomentum tensors ,S%(P;+/) and ,,5(P; /), gravita-
and matter, need not any radius vector to be defined.

3 We have also eliminated in (33) the components of the Ricci tensor with the help of the
stein equations.

an~-

gkt _

Tl Ehe
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given. Of course, one can also make our averaging just along a worldline of a
fiducial observer O (then, we use Fermi normal coordinates). In this case our aver.
aging becomes similar to the averaging used by Mashhoon et al. However, there
are important differences. Firstly, our construction does not use the parameter ¢
and uses a four-dimensional domain for averaging. In consequence, it is covarians
and universal, and because we do not use parameter ¢, it gives superenergy and
angular supermomentum tensors instead of the energy-momentum and the angular
momentum tensors. Secondly, our starting objects are energy-momentum and angu-
lar momentum tensors and pseudotensors; and not the Riemann curvature tensor.
Thus, our formalism is closely related to the field theoretical formalism of the
canonical energy-momentum and canonical angular momentum in general relativ-
ity.

We consider the construction that was made by Mashhoon et al. (Faraday’s ten-
sor, Maxwell tensor for the field Rj,) a bit formal and too much alike the formal-
ism of the electromagnetic field which is different from gravitational field. Also, it
seems that an averaging similar to Pirani’s averaging (and our or Mashhoon’s gen-
eralization of this averaging) in a natural way brings us to the superenergy level.
Thus, we think that a mathematical trick with the parameter ¢ used by Mashhoon
et al. in order to get an energy-momentum tensor after averaging is somewhat
artificial. For example, Mashhoon’s “energy density” requires an arbitrary dimen-
sional parameter L, and it has bad transformational properties. In consequence, we
prefer our definitions of the superenergy and angular supermomentum tensors.

4 Canonical superenergy and canonical angular supermomentum tensors
of gravitational waves

By a direct calculation one can easily check that the canonical superenergy tensor
¢S/*(P;v') and the canonical angular supermomentum tensor ,S*/(P; ™) give posi-
tive-definite superenergy density, a non-vanishing superenergy flux, and non-vanish-
ing angular supermomentum flux for every known solution of the vacuum Einstein
field equations which represents a gravitational wave with Ry, # 0. For example,
for the linearly polarized gravitational wave which propagates in positive direction
of the z-axis [in holonomic coordinates (1,x,y, z)] [42]

ds? = d? — L} (® d + e ¥ @y?) - d2?

=dudv— L*(e¥ d 4+ e ¥ dy?), (35)
where
L=L(u), B=pBWu)), u=t-z,
LH _+_ (ﬁl)z — 07
! — d‘ﬁ | T dL | dzﬁ ’;ﬁ
'8'_@’ L._a, L'_aﬁ’ (36)

in the Lorentzian coframe

F=dt, d=Lfdx, #F=LePdy, & =dz. (37)

] Gareck
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we have [21] positive-definite ,So° component

gsn”=% (1A% + 7B* + 6C*) > 0, (38)
where
LH Lr ! , P
A:=—+2-J-3-+ﬁ’+ﬁ .
" f
B::%—Z ﬁ' ﬁ' -!-ﬂ

L

& (z) B (39)

In this coframe we also have
§53° = (=) S0’ = (=) F aB? #0. )

From the above results we conclude that the gravitational superenergy density 8¢,
defined covariantly as

B¢y = S Y= Sn) (41)

is a positive-definite scalar. _
The gravitational Poynting's (super)vector P' defined as

P = (8}, — v'u) (SH(P ) (42)
has the following components in the Lorentzian coframe '
P=pP=P=0, P=,S’'=fal. (43)
For the same gravitational wave (35)—(36) we also have in the null coreper [22]
= (=) 5 = 4/3av' AF
85“P (=) ¢S = 4/3a0"' F',
S0 = ()80 = (=) 4/3av'F,
S8 = (=) 88 = (<) 4/3a"'F,
£S00 = (=) 8% = 4/3aF (v - F),
gsz = (—)gli'm2 = (=) 4/3av'?F,
$93 = (=) S'® = 4/3av'PF,
RSOZD = (-—}35200 = 4ar" A F'
(

82 = (-) 35'202 = 2aF' (2% - 1),
S = {-_}gsam = (=) 4ar’’F,
5% =, 8% =2aF (1 - 2o™). (44)

The other components of ,5°(P;+/) vanish in this coreper.
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In the above formulas F' := &€ and F = F(t - z) =: F(u) is an arbitrary functiop energy
different from zero, v/ (i = 0,1,2,3) is the four-velocity of an observer O which i referen
at rest at the beginning P of the NC(P) adapted to the holonomic coordinates mearre

(t,x,y,2), i.e., ¥ = §; in these normal coordinates.
It is clear from the above results that the plane gravitational waves possess and
carry the superenergy and the angular supermomentum, This is, of COUTSe, true jy 6 Acki

any admissible coordinates and was proved in our papers [19, 21-23]. The analogi.
cal result we have also for any other real gra\ntahonal wave. [N/ —_— The au

Also, 1t_resu S IIOM e ABOVE_Tact that_every gravitational wave, which has help in

Rixim # 0, must also carry th itational energy- avitational
an%ﬂ{r momentum. If not, then there wou a contradiction_between an “en.
h—'._-‘-—

_ergy level” and a_“é:lp;/_MHM!eﬁ because our canonical superenergy and an- Appen

gul m { originated as a _kind of averaging of the suitable gular m

pseudotensors, Notice also in this context that, as ollows Trom the Defini-

tion (4), that they(R) := () (S (P;vf) vink | o(P;y)dQ gives the approximate One ca;
Q

(relative with respect to P) energy contained ina sufficiently small domain QFand
(-jP‘(Q) = (4) 1/2(8) — vwi) o SH(P;v™) o [ 0(P;y) AR gives Poynting’s vector of this s

(relative with respect to P) energy conlaﬁ?ed in %’e(Q) and P'(Q) do ngpVawsh compon

in any admissible coordinates for a gravitational wave which has Riim # 0@ tional fi
Thus, the non-zero superenergy density and its non-zero flux for a grav al

wave really demand a non-zero gravitational energy and its non-zero flux for such a

wave. All this is in agreement with the results obtained years ago by Mashhoon = s callec
etal., [34—36] by the application of the GEM stress-energy tensor for gravitoelec- | fion in (
tromagnetic field. In an

important fact that any gravitational wave which has Ry, # 0 alw, er
nergy- i mouflaged in some coordinates energy-momentum of
'—de—Lf—'EW e analogous considerations based on the Definition (23

are valid also for the angular momentum.

and

5 Concluding remarks

If one wants to get correct information about an energy-momentum and an \angu- ! From

ar momentum of the real gravitational field by the application pseudotensors. hen laws
QW‘*J‘EJ one has to use the pseudotensors in very special coordinates only (seel e.g.

[43—45]). Namely, one must use pseudotensors in coordinates in which I\ de-

scribe only the real gravitational field. The examples of such coordinates are given, for matt.

for example, by global Bondi-Sachs coordinates for a closed system [46] or, in gen- From

eral, by normal coordinates NC(P) [24—26, 47, 48]. energy-n

order et_informatio the itational e 5 tum and the .

gravitational angular momentum in arbitrary admissible coordinates [ st use

covariant expressions which depend on the curvaturg tensor. Our canonical super- —

WP_‘ gy _and angular Sipermomentum tensors are exactly the quantities of such a " In tt

kind. In application to gravitati adiation these silocal guantities unambigu- miffl syst

ously show, That any gravitational waves which have Rium # 0 always transfer the It ca
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