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Motivations

Cosmological models and evolution of the Universe are based on the
constant (not changing during the evolution) real line R (Di� invariance of
GR requires R to be complete)

On every energy scale and stage of the evolution one deals with the same (up to
di�eomorphisms) `absolute' R.

We address the following issues in building the cosmological models:

Do we really have tools to manage the variation of R (and N)?

Does real numbers line on cosmological scale emerge somehow from pure
quantum regime?

Are smooth structures on 4-spacetimes always �xed and standard?

Is the steadiness of R and 4-smoothnes any physical law? Or rather
Can the change of R and the smoothness help explaining some problems in
cosmology?
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The tools: Extending the real line R by adding new reals

I. Robinson's nonstandard models of arithmetic and analysis, ∗R. They contain
in�nitely big, r∗ > r ,∀r ∈ R, and in�nitely small, |r∗| < 1

n ,∀n ∈ N, real
numbers.

II. Forcing in set theory: R in a model M of ZFC (Zermelo-Fraenkel set
theory) is extended to R[G ] via forcing adding reals (M[G ] is the extended
model of ZFC).

III. Real line RT in T a smooth topos. RT contains nilpotent in�nitesimals,
r ∈ RT , i.e. r

2 = 0, and Robinson's non-standard numbers. The logic can
not be classical. It is intuitionistic one. Natural numbers has to vary which
shows geometric impact in dimension 4 (M.Heller,JK,2016).
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QM to GR and the modi�cation of R
We focus on the program:

Start with QM at micro-scale (the lattice of projections); recognize the real
numbers line R; reach the cosmological scale (GR) with its R; compare R and R;
draw the physical conclusions.

Completing the program gives rise to:

(primordial)QMregime
Forcing(ZFC)

−−−−−−−−→
R→R[G ]

large scaleGR (1)

but also

QMregime
R4→exoticR4

−−−−−−−−−−→
�atR4→curvedR4

large scaleGR + 4d curvature (2)

Moreover,

(3) The 4d curvature appearing in (2) plays the role of the cosmological
constant in the model.
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Forcing and Exotic R4 from L
Let us start with QM lattice of projections L
(a) The local descriptions of L (Boolean contexts) are given by forcing models of

ZFC (sheaves on the measure algebras); thus the real line is enlarged by the
random forcing (based on the measure Boolean algebra of the spectrum
of quantum operators) [G.Takeuti,1975;M.Ozawa,1988;JK,et al.,2015-2016]

The quantum real line R corresponds to the continuous spectrum of the position
operator Q. Then the 'classical' R has to be enlarged by the random forcing

(b) Since L cannot be globally Boolean (none of local Boolean contexts can be
global),

then

a smooth structure on R4 derived from quantum L, cannot be standard (every
local open cover of R4 is not reduced to the single-patch R4)
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QM, 4-smoothness and the real line R

Forcing on R and exotic R4 are both derived from the quantum lattice L!
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Physics: forcing and zero-modes

The presence of forcing in passing from micro to macro scale cancels the
zero-modes of quantum �elds

E

V
=

∫
R3

M

d3k

(2π)3

√
k2 + m2

2
, m ∈ RM[G ], k ∈ R3

M ,

which all vanish, since we integrate over the `meager' (null) set R3

M ⊂ R3

M[G ].

Thus CC = 0
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Physics: exotic R4 and CC

Physically, the 4-curvature of exotic smooth R4 is the non-vanishing value of the
cosmological constant

0 6= CC ∼ curv(R4)

when R4 is embedded in R4 [T.Asselmeyer-Maluga,JK,2014]
More precisely

- Exotic smooth R4 cannot be �at, so that Rµνρσ 6= 0 (CC)

- R4 determines the sequence of hyperbolic 3-manifolds; then the constancy
of CC follows from the Mostow rigidity (curvature and volume are
topological invariants) [T.Asselmeyer-Maluga,JK,2014;2016]
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Cosmology from exotic 4-smoothness on R4

Given exotic R4 and removing the singular point pt. ∈ R4 we have exotic
S3 ×Σ R

Non-canceling smoothly pairs of 1− 2 handles in R4 lead to necessarily
exponential potential for the in�ation �eld with the scalar �eld of the
Starobinsky model

The change of the spatial (3D) topology in S3 ×Σ R is described by the
Morse function (of handles) and it is the scalar �eld φ

Let us see how it works ...
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The example: topology change from S3 to a homology
3-sphere Σ driven by exotic R4

Spacetime out of singular point is modeled by exotic S3 ×Σ R
compact 3-manifold Σ is homology 3-sphere (Brieskorn sphere) given by the
solution set

x , y , z ∈ C : x2 + y5 + z7 = 0 |x |2 + |y |2 + |z |2 = 1

The change S3 → Σ is given by scalar �eld model (φ scalar �eld)

L = R + ∂µφ∂µφ+
1

8α
(1− exp(−φ))2

leading to the Starobinsky model

L = R + α · R2

Topology change inside exotic R4: wild S3 → Σ→ P#P (TAM, JK 2014,
2016(forthcoming))
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Exponential growth of the universe (in�ation)

Expansion scale factor ϑ is completely determined by the topology of the change
S3 → Σ (smooth cancelation of 1-/2-handles), namely
the radial coordinate a(t) (FRW metric) scales after in�ation (using Witten +
in�nite Casson handles) like

a = a0 · exp
(
ϑ

2

)
ϑ =

3

CS(Σ)

where a0 is the radius of S3
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The value of the Chern-Simons invariant of the Brieskorn sphere and the
corresponding value of expansion factor, read

CS(Σ) =
9

280

ϑ =
280

3
≈ 93.33333...

Using the Planck scale at beginning (a0 = LP) we have:

a = LP · exp
(

3

2 · CS(Σ)

)
≈ LP · 1.8 · 1020 ≈ 7.5 · 10−15m

Not enough in�ation; BUT exotic smoothness enforces another topology change!

Jerzy Król (US Katowice) 12 / 16



The second topology change: Σ→ P#P (sum of two Poincare spheres) with the
expansion factor:

CS(P#P) =
1

60
ϑ = 180

Using Planck scale at beginning (a0 = LP):

a = LP · exp
(

3

2 · CS(Σ)
+

3

2 · CS(P#P)

)
≈ LP · 2.2 · 1059

≈ 109Light years

What is α? α represents the energy scale when the �rst transition starts (=
canceling of the �rst handles pair)

1

α
= 1 +

3

2 · CS(Σ)
+

1

2

(
3

2 · CS(Σ)

)2

+
1

6

(
3

2 · CS(Σ)

)3

α ≈ 5.5 · 10−5

Good agreement with measurement!!
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What about CC?
CC is the curvature of the exotic R4 (inside standard R4)

CC =
1

a2
= (LP)−2 exp

(
− 3

2 · CS(Σ)
− 3

2 · CS(P#P)

)
Taking recent value (H0)Planck = 68 km

s·Mpc we obtain

ΩΛ(CC ) = 0.6836

Very good agreement with Planck measurement ΩΛ = 0.683
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exotic R4, S3 ×Θ R and Casson handles

Exotic smoothness is carried by in�nite geometrical constructions coded by
Casson handles and `gropes'

The simplest Casson handle and exotic R4

More complicated structures are the gropes (capped)

These in�nite constructions make
the in�aton potential to be
exponential rather than
polynomial. If one deals with
homeomorphic objects all the
constructions collapse to the �nite
2-handles (and the smoothness to
the standard one)
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� We presented the model where quantum lattice of projections determined
forcing and exotic smooth S3 ×Σ R ⊂ exoticR4 ⊂ R4

� Forcing cancels the QFT zero-modes while R4 reintroduces its small value
(good agreement)

� Exotic smoothness reintroduces non-vanishing CC and exponential in�ation
potential via purely topological invariants (good agreement)

� Whether it is fully realistic model requires further analysis, especially
experimental veri�cation (CMB should have coded the forcing era of the
expansion)
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Thank You!
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