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An idea

Standard Field Theory - Linear Field Space:

Nonlinear Field Space Theory1:

1J. M. & T. Trześniewski “The Nonlinear Field Space Theory”, Physics
Letters B 759 (2016) 424.
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Relations/inpirations

A compact field space is a natural way to implement the
“Principle of finiteness” of physical theories, which once
motivated the Born-Infeld theory (1938). Dynamical
constraint on the field values.

NFST is similar to the case of a relativistic particle, where the
maximal speed of propagation is a result of the spacetime
geometry, independently of the particular form of the
Lagrange or Hamilton function.

Lattice field theories → compact field spaces on discrete
lattice.

Non-linear sigma models (GellMann,1960; Witten,1984) -
multi-component scalar field (but usually not field velocities or
momenta) are constrained to lie on a Riemannian manifold.

Relative Locality, curved particle momentum spaces.

Loop Quantum Gravity, polymer quantization.
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The scalar field

In the standard case the scalar field is a function φ :M→ Cφ = R,
where M = Σ× R is the spacetime manifold. In the canonical
formulation the field φ is accompanied by the canonical
momentum π :M→ R, obeying the Poisson bracket
{φ(x, t), π(y, t)} = δ(3)(x− y). Then at every spacetime point the
pair (φ, π) forms the phase space Γ(x,t) = T ∗(Cφ(x,t)) = R× R and
the total phase space is given by

∏
(x,t) Γ(x,t).

The NFST may be constructed for field variables defined in the
Fourier space rather than position space, which actually turns out
to be more convenient. To this end we perform the Fourier
transform of the field:

φ(x, t) =
1√
V

∑
k

φ̃k(t)e ik·x ,

and similarly for the momentum π(x, t)
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The Fourier components are complex and, since the fields φ and π
are real, satisfy the so-called reality conditions. With the use of a
suitable canonical transformation they can be, however, redefined
so that we will work only with real variables. This can be achieved
in many different ways but the most convenient transformation is
given by:

φ̃k =
e i

π
4 φk + e−i

π
4 φ−k√

2
, π̃k =

e i
π
4 πk + e−i

π
4 π−k√

2
,

where φk, πk ∈ R and {φk, πk′} = δk,k′ .
Then, using the φk and πk variables, the standard Hamiltonian of a
free massless scalar field:

Hφ =

∫
V
d3x

(
π2

2
+

1

2
δab∂aφ∂bφ

)
,

can be Fourier-transformed into

Hφ =
1

2

∑
k

(
π2
k + k2φ2

k

)
,

where k =
√
k · k.
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Spherical phase space

Parametrizing the spherical phase space Γk = S2 by the standard
angular variables (ϕ, θ) we then obtain the symplectic form
ω = J sin θ dϕ ∧ dθ, where J is a free parameter.

In order to have the correct flat limit we choose

(−π, π] 3 ϕ =
φk
R
, and [0, π] 3 θ =

π

2
− Rπk

J
,

where R is a constant introduced for dimensional reasons.
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With the above redefinition the ω form rewrites to:

ω = cos

(
πkR

J

)
dπk ∧ dφk .

Clearly, for canonical momenta such that πk � J
R the φk and πk

variables become Darboux coordinates with the standard
symplectic form ω = dπk ∧ dφk. Furthermore, if we have a
symplectic form the Poisson tensor P ij can be defined as
P ij = (ω−1)ij , allowing us to calculate the Poisson bracket
{f , g} = P ij(∂i f )(∂jg). Hence the canonical Poisson bracket:

{φk, πk′} = sec

(
πkR

J

)
δk,k′ ,

which generalizes the standard one {φk, πk′} = δk,k′ . The
canonical bracket is, however, only locally well defined, because
neither set of variables (φk, πk) nor (ϕ, θ) is globally given on S2 –
there is discontinuity at ϕ = π.
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On the other hand, using (φk, πk) one can construct the
well-known globally defined functions:

Jx := J sin θ cosϕ = J cos

(
πkR

J

)
cos

(
φk
R

)
,

Jy := J sin θ sinϕ = J cos

(
πkR

J

)
sin

(
φk
R

)
,

Jz := J cos θ = J sin

(
πkR

J

)
,

which form the su(2) Lie algebra {Ji , Jj} = εijkJ
k .

On the corresponding Hilbert space HJ (with a given value of J)
we write the su(2) algebra as [Ĵi , Ĵj ] = i}εijk Ĵk . Then we have to
take care of the issue of functional representations of states in HJ ,
on which the operators Ĵi are acting.
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Due to the non-product form of the considered phase space, the
field configuration and momentum representations of a quantum
state will be meaningful only locally. Therefore, in general we
should instead define a quantum quasiprobability distribution
(which is not necessarily a positive definite function) on the phase
space, such as the Wigner function. With the use of a Wigner
function W (ϕ, θ) the expectation value of an operator Â can be
given as the phase space average

〈Â〉 :=

∫
S2

d2ΩA(ϕ, θ)W (ϕ, θ).

The Wigner function for a pure state |Ψ〉 ∈ HJ on the spherical
phase space can be defined as

W (ϕ, θ) := tr(|Ψ〉〈Ψ|ŵ(ϕ, θ)),

where ŵ(ϕ, θ) denotes the Wigner operator.
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The Ĵi operators can be expanded in powers of the operators φ̂k
and π̂k. Such a procedure is valid for phase space quasiprobability
distributions (such as the Wigner function) supported on
sufficiently small values of φk and πk (φk � R π

2 , πk � J
R
π
2 ). We

obtain

Ĵx = J

(
1− 1

2R2
φ̂2
k −

R2

2J2
π̂2
k + . . .

)
,

Ĵy =
J

R
φ̂k + . . . , Ĵz = Rπ̂k + . . . ,

where dots denote higher powers of the φ̂k and π̂k operators. In
the leading order, the commutator [Ĵy , Ĵz ] = i}Ĵx results in the
following modified commutation relation:

[φ̂k, π̂k] = i}
(
Î− 1

2R2
φ̂2
k −

R2

2J2
π̂2
k + . . .

)
,

where, due to the spectral theorem, for O = φk, πk and f (x) ∈ C∞

the condition f̂ (O) = f (Ô) is satisfied.
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One can, therefore, associate a nonlinear structure of the field
phase space with a modification of the standard commutation
relations. Furthermore, for the state in which 〈φ̂k〉 = 0 = 〈π̂k〉 the
deformed commutation relation leads to the following generalized
uncertainty principle:

∆φk∆πk ≥
}
2

[
1− 1

2R2
(∆φk)2 − R2

2J2
(∆πk)2

]
.

Inspection of this inequality reveals that (neglecting higher order
corrections) due to the spherical field phase space either the ∆φk
or ∆πk uncertainty can be saturated to zero while the other
uncertainty is kept constant. A similar effect was observed in
(Bojowald and Kempf, 2012), where the periodic phase space of
the form Γ = R× S1 was studied.
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Dynamics

Having the kinematics defined we are now ready to introduce the
(classical) dynamics of the considered NFST. To this end we have
to find a Hamiltonian which is satisfying two requirements:

1 it is a globally defined function on the phase space,

2 it reduces to the classical Hamiltonian in the flat phase space
limit (i.e. for J →∞).

In order to fulfill the condition (1) we can use globally defined
variables Ji as the Hamilton function’s building blocks.

Furthermore, the fact that in Nature one observes field excitations
around (φk, πk) = (0, 0) suggests that this point in the phase space
should be the classical minimum of the Hamiltonian.
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An ambiguity in reconstructing the global Hamiltonian:

In the global minimum Hk ≈ 1
2

(
π2
k + k2φ2

k

)
.
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Let us consider a spin (magnetic moment) immersed in the
constant magnetic field B, which leads to a breakdown of the
rotational invariance. Depending on the sign of the magnetic
moment of a particle, the minimum energy state is associated with
either parallel or anti-parallel alignment of the vectors J and B.
Consequently, we have H ∝ J · B = JxBx . Analogously, we define
the Hamiltonian for our model in the following way:

Hφ =
∑
k

Hk , where

Hk := −Jk cos

(
πk√
Jk

)
cos

(√
k

J
φk

)

= −Jk +
1

2

(
π2
k + k2φ2

k

)
− k

4J
φ2
kπ

2
k

− 1

24Jk

(
π4
k + k4φ4

k

)
+O(J−2) ,

where the condition (2) is fixing R =
√

J/k .

Jakub Mielczarek The Nonlinear Field Space Theory



The obtained Hamiltonian can be perturbatively diagonalized (at
least up to the order J−1) with the use of creation and annihilation
operators. Due to the deformation of the canonical commutation
relation, the expressions for the creation and annihilation operators
â†k, âk will differ from the usual ones. Furthermore, the â†k and âk
fulfill the q-deformed version of their commutation relation:
âkâ
†
k − qâ†kâk = Î.

This allows us to express the field operators as follows:

φ̂k =

√
}

2k

(
âk + â†k

)
√

1 + }
2J

, π̂k = −i
√

}k
2

(
âk − â†k

)
√

1 + }
2J

,

where the q-deformation factor:

q =
1− }

2J

1 + }
2J

= 1− }
J

+O(J−2) .
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The total Hilbert space of the system is H =
⊗

kHk, where

Hk = span {|0k〉, |1k〉, . . . , |nmax,k〉}. The actions of the â†k and âk
operators on the |nk〉 basis states are found to have the form:

â†k|n〉 =

√
1− qn+1

1− q
|n + 1〉 , âk|n〉 =

√
1− qn

1− q
|n − 1〉 ,

giving the q-deformed expression for the occupation number
operator â†kâk|nk〉 = 1−qn

1−q |nk〉. Based on this, the Hamiltonian can
be expanded as follows:

Ĥk = −Jk Î +

(
1

2
− }

4J

)
k} Î + k}

(
1− }

J

)
â†kâk

+
k}
24

}
J

(
â4
k + (â†k)4 − 6(â†kâk)2 − 6â†kâk − 6Î

)
+ O(J−2) .
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Propagator

Assuming statistical isotropy of the spatial field configurations, the
two-point correlation function is given by

〈0|φ̂(x, t)φ̂(y, t ′)|0〉 =
1

V

∑
k,n

|cn|2e ik·(x−y)−i∆En(t−t′)

=
1

V

∑
k

∫
dω

2π
D(ω,k)e

ik·(x−y)−iω(t−t′) ,

where (for a given wave number) ∆En = E
(1)
n − E

(1)
0 and, denoting

p2 = −ω2 + k2, we calculate the propagator:

D(ω,k) =
i
(
1− 2

J

)
−ω2 + k2

(
1− 3

J

)
+ iε

+O(J−2)

=
i

−ω2 + k2
+

i

J

k2 + 2ω2

(−ω2 + k2)2
+O(J−2) .
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Renormalized constants

From the propagator given as the single term one can deduce that
the “renormalized” speed of light reads

cren = 1− 3

2

}
J

+O(J−2).

Furthermore, the propagatorcan be used to predict the form of
interaction potential between two point sources of the scalar field:

V (r) = 4πi

∫
d3k

(2π})3
e ik·rD(0,k)Q0 = −Q0

r

(
1 +

}
J

+O(J−2)

)
,

where Q0 is the charge of a field source. The difference with the
standard case can be absorbed into “renormalized” charge

Qren = Q0

(
1 +

}
J

+O(J−2)

)
.
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The Nonlinear Field Space Cosmology

Homogeneous, Γ = S2 scalar field with the Hamiltonian Hφ ∝ −Jx .

A concrete example for Minkowski background space
(appropriately shifted zero point energy):

ρ∗ ≥ ρφ = ρ∗

[
1− cos

(
πφ√
ρ∗

)
cos

(
mφ
√
ρ∗

)]
=

π2
φ

2
+

1

2
m2φ2 +O(1/ρ∗),

where ρ∗ is a new energy density scale. The symplectic form:

ω = cos

(
πφ√
ρ∗

)
πφ ∧ φ = πφ ∧ φ+O(1/ρ∗),

which leads to the following expression for the Poisson bracket:

{·, ·} =
1

cos
(
πφ√
ρ∗

) [ ∂·
∂φ

∂·
∂πφ
− ∂·
∂πφ

∂·
∂φ

]
.
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Introducing the scale factor dependence, we find:

ρ∗ ≥ ρφ = ρ∗

[
1− cos

(
πφ

q
√
ρ∗

)
cos

(
mφ
√
ρ∗

)]
,

such that πφ/q and φ are true scalars and q ≡ a3. The symplectic
form for the whole system (gravity+matter) can be now written as
follows:

ω = dp ∧ dq + cos

(
πφ√
ρ∗

)
πφ ∧ φ.

Applying the q and p variables the total Hamiltonian:

Htot = Nq

(
−3

4
κp2 + ρφ

)
.

With use of the primary constraint and the Hamilton equation
q̇ = {q,Htot}, for N = 1 gauge we recover the Friedmann
equation:(

1

3

q̇

q

)2

≡ H2 =
κ

3
ρφ =

κρ∗
3

[
1− cos

(
πφ

q
√
ρ∗

)
cos

(
mφ
√
ρ∗

)]
.
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The Ricci scalar for the model is equal:

R = 6(Ḣ + 2H2)

= 3κρ∗

[
4

3
− cos

(
mφ
√
ρ∗

)(
4

3
cos

(
πφ

q
√
ρ∗

)
+

πφ
q
√
ρ∗

sin

(
πφ

q
√
ρ∗

))]
,

with
πφ

q
√
ρ∗
∈
[
− π

2q ,
π
2q

]
, together with q ≥ 1, and mφ√

ρ∗
∈ (−π, π].

Value of the Ricci scalar is bounded from both sides:

−0.83κρ∗ ≤ R ≤ 8.83κρ∗.

One can conclude that the FRW singularity is avoided due to the
bounded nature of the matter Hamiltonian function.

Jakub Mielczarek The Nonlinear Field Space Theory



Summary

NFTS - linear fields space is only an approximation.

Compactness of the field space allows to implement “Principle
of finiteness”.

Numerous interesting predictions, including: generalization of
the uncertainty relations, algebra deformations, constraining
of the maximal occupation number, shifting of the vacuum
energy and renormalization of constants.

For J = const, conformal invariance of Minkowski spacetime
is preserved at the level of the field structure. In case of
k-dependence of the J parameter, effects such as
energy-dependence of the speed of propagation of field
excitations are expected.

Application in theoretical physics (e.g. quantum gravity) and
condensed matter physics (e.g. continuous spin chains).

Cosmological singularity avoidance due to bounded matter
field functions.
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