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1 Introduction

• Small deviations in the temperature of CMB ⇒ Isotropy.
• Copernican Principle ⇒ Homogeneity at large scales.

FLRW space time metric:

gµν = −dt2 + a(t)2

[(
1

1− kr2

)
dr2 + r2dθ2 + r2 sin2 (θ)dϕ2

]
,

where a(t) is the scale factor and k = −1, 0, 1.
• Late-time acceleration ⇒ Existence of dark energy.
• Dark energy density can be described as:

ρd = ρd0a
−3(1+wd ), where wd ≈ −1,

• Best fit given by ΛCDM model, where wd = −1.
∗ what happens if the cosmological constant is not quite constant?
• The tiniest deviation in wd can induce a range of different future events.
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Cosmological perturbations in a genuinely phantom dark energy Universe 2



Cosmological perturbations in a genuinely phantom dark energy Universe

Background models

• Each model induce an unique abrupt event:
∗ Model (i) ⇒ Big Rip (BR)
∗ Model (ii) ⇒ Little Rip (LR)
∗ Model (iii) ⇒ Little Sibling of the Big Rip (LSBR)

Event Divergence pd = pd (ρ)

BR a, |H|, |Ḣ| → ∞, t <∞ pd = wdρd ,

LR t, a, |H|, |Ḣ| → ∞ pd = −ρ− Bρ
1
2

d

LSBR t, a, |H| → ∞, |Ḣ| <∞ pd = −ρd − A

Where wd < −1 and the parameters A and B are positive.
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Perturbed equations-1

• We choose the Newtonian gauge. For FLRW universe the perturbed
line element is

ds2 = a2
[
− (1 + 2Ψ) dη2 + (1− 2Φ) δijdx

idx j
]
,

where η is the comoving time and Ψ and Φ the Bandeen potentials.
• Christoffel Symbols ⇒ Ricci scalar and curvature ⇒ Perturbed Einstein
equation.

δGµ
ν = 8πGδTµ

ν ,

• The individual components can be written as

−∇2Ψ + 3H (ΦH+ Ψ′) = −4πGa2δT 0
0,

[HΦ + Ψ′],i = −4πGa2δT 0
i ,

3Ψ′′ +
2

3
∇2 (Φ−Ψ) + 2H (Φ′ + 2Ψ′) + 2Φ

(
2H′ +H2

)
Φ =

4

3
πGa2δT i

i ,

[Φ−Ψ],ij = 8πGa2δT i
j . (i 6= j)
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Perturbed equations-2

• δTµ
ν is the sum of the perturbed energy momentum tensor of different

fluids i.e. δTµ
ν = δTµ

r ν + δTµ
m ν + δTµ

d ν . For a fluid called A;

δT 0
A 0 =− δρA,

δT i
A 0 =− (p + ρ) ∂ ivA,

δT 0
A i = (p + ρ) ∂ivA,

δT i
A j = δpA δ

i
j + Πi

A j .

• No anisotropic stress tensor; Πi
A j = 0 implies Ψ = Φ, then, we have:

∇2Ψ + 3H (HΨ−Ψ′) = 4πGa2δρ,

∇2 (HΨ + Ψ′) = −4πGa2 (ρ+ p)∇2v ,

Ψ′′ + 3HΨ′ + Ψ
(
2H′ +H2

)
= 4πGa2δp,
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Perturbed equations-3

• The pressure can be decompose in the following way

δpA = c2
sAδρA − 3H (1 + wA)

(
c2
sA − c2

aA

)
ρAvA,

where c2
sA = δpA

δρA

∣∣∣
r .f

and c2
aA =

p′A
ρ′A
, are respectively the effective speed of

sound in the rest frame and the adiabatic speed of sound.
• The fluids are conserved separately, that means

∇µδTµ
A ν + δΓµµαT

α
A ν − δΓαµνT

µ
Aα = 0,

leading to the equations

δ′A = (1 + wA)
{[
k2 + 9H

(
c2
sA − c2

aA

)]
vA + 3Ψ′

}
+ 3

(
wA − c2

sA

)
δA,

v ′A =
(
3c2

sA − 1
)
HvA −

c2
sA

1 + wA
δA −Ψ.
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Perturbed equations-4

• Decomposition into Fourier components, therefore, for practical
purposes, we make the substitution ∇2 → −k2

• We apply the change of variable x ≡ ln (a), therefore, {}′ = {}x H
• The set of dynamical equations for each component can be written as
∗ Radiation component

δrx =
4

3

(
k2

H
vr + 3Ψx

)
, vrx = − 1

H

(
1

4
δr + Ψ

)

∗ Matter component

δmx =
k2

H
vr + 3Ψx , vmx = −vm −

Ψ

H
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Cosmological perturbations in a genuinely phantom dark energy Universe 7



Cosmological perturbations in a genuinely phantom dark energy Universe

Perturbed equations-5

∗ DE component

δdx = (1 + wd)

{[
k2

H
+ 9H

(
1− c2

ad

)]
vd + 3Ψx

}
+ 3 (wd − 1) δd ,

vdx = − 1

H

[
1

1 + wd
δd + Ψ

]
+ 2vd .

• The metric potential satisfies:

Ψx + Ψ

(
1 +

k2

3H2

)
= −1

2
δ,

Ψx + Ψ = −3

2
Hv (1 + w) ,

Ψxx +

[
3− 1

2
(1 + 3w)

]
Ψx − 3wΨ =

3

2

δp

ρ
.
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DE as a phantom scalar field

• Matter and radiation described as a barotropic fluid where c2
sA = c2

aA.
• For fluids with a negative EoS there might be some problems since
c2
aA < 0, leading to undesirable instabilities.
• We follow the strategy applied in (R. Bean ‘03, J. Väliviita ‘08) which
consists into map the dark energy to a scalar field, ϕ, where the
variations of energy density and pressure are

δρϕ = −ϕ̇ (δϕ̇+ ϕ̇Ψ) +
δV

∂ϕ
δϕ,

δpϕ = −ϕ̇ (δϕ̇+ ϕ̇Ψ)− δV

∂ϕ
δϕ.

• The rest frame is defined by constant ϕ surfaces i.e. δϕ = 0.
Therefore, δρϕ = δpϕ and we set c2

sA = 1 (A. V. Astashenok and
S. D. Odintsov ‘12).
• This mapping of the DE fluid to a phantom scalar field removes any
instabilities in the energy density of the scalar perturbations of DE.
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Initial conditions-1

• We impose;
∗ At an initial moment, x∗ ≈ −14, the Universe was completely
dominated by radiation i.e. p = (1/3) ρ
∗ At such moment all the relevant comoving wave-numbers of the modes
are small when compared with the comoving Hubble parameter, i.e
k � H.
∗ Combining the above approximations with the equation set it is found
that Ψxx + 3Ψx ≈ 0. Therefore, the dominant solution is constant.
∗ Assuming initial adiabatic conditions, we can relate the initial values of
the individual fluid perturbation variables to the total perturbation.

3

4
δr (x∗) = δm (x∗) =

δd (x∗)
1 + wd (x∗)

=
3

4
δ (x∗) ,

vr (x∗) = vm (x∗) = vd (x∗) ≈
δ (x∗)

4H(x∗)
.
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Initial conditions-2

• Making use of the linearity properties, we can first compute the
evolution of the perturbation quantities using the initial conditions for
Ψ (x∗) = 1.
• Then, we multiply all the solutions obtained by the physical value of
δ (x∗), which we will take from the Planck observational fit to single field
inflation.

δ (x∗) =
8

3
π
√

2As

(
k

k∗

) ns−1
2

k−
3
2 ,

where As and ns are the amplitude and spectral index of the primordial
power spectrum corresponding to the selected pivot scale k∗. We use the
values k∗ = 0.05 Mpc−1, As = 2.143 · 10−9, and ns = 0.9681 in
accordance with the latest observational data (Planck ‘15).

Imanol Albarran, Mariam Bouhmadi-López and João Morais
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Matter power spectrum and growth rate

• With the aim to compare the theoretical predictions with the
observational data, we will compute the matter power spectrum and the
growth rate for each model.
∗ Matter power spectrum
Matter power spectrum is usually calculated in the comoving gauge
rather than in the Newtonian gauge.

Pδ̂m =
∣∣∣δ(com)

m

∣∣∣
2

= |δm − 3Hvm|2 .

We will compare the results with the ΛCDM model.
∗ Growth rate

f ≡ d (ln δm)

d (ln a)
.

We compare our results with SSDS III data (S. Satpathy ‘16).
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Results-1

• For each of these models, the evolution of the matter perturbations δm,
vm, δr , vr , δd , and vd was obtained by numerically integrating the
previous set of equations.
• The integration was performed since an initial moment deep inside the
radiation epoch (z ∼ 106), till a point in the distant future (z ∼ −0.99).
• For each model this integration was repeated for several different
modes with wave-numbers ranging from a kmin ∼ 3.3 · 10−4h Mpc−1, to
a kmax ∼ 3.0 · 10−1h Mpc−1.
∗ For the following examples we have used 6 different wave-numbers
classified as
Large: k = 6.80 · 10−2h Mpc−1 and k = 0.30 h Mpc−1 .
Medium: k = 3.50 · 10−3h Mpc−1 and k = 1.54 · 10−2h Mpc−1

Small: k = 3.33 · 10−4h Mpc−1 and k = 7.93 · 10−4h Mpc−1 ,
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Results-2 (Matter perturbations)

k
3 2
δ m

x x x

(i) (ii) (iii)

• The matter perturbations for the different models present an almost
identical behaviour.
• During the radiation dominated epoch, each individual mode remains
constant until it enters the Hubble horizon.
• Then, the gravitational collapse leads to the growth of δm, which
becomes exponential in x during the matter era.
• Once DE starts to become dominant, the growth of the matter
perturbations slows down and δm converges to a constant value in the
asymptotic future.

Imanol Albarran, Mariam Bouhmadi-López and João Morais
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Results-3 (DE perturbations)

k
3 2
δ d

x x x

(i) (ii) (iii)

• The modes with large wave-numbers enter the horizon at earlier times
and oscillate in the radiation dominated era. During the matter
dominated era reach a plateau and decay rapidly when DE takes over.
• The modes with medium wave-numbers enter the horizon in the matter
epoch with an almost constant value. When DE dominates the amplitude
decay vanishing in the far future.
• For the smallest wave-numbers there is no decay and it can be seen
how the modes are slight amplified reaching a plateau at late times.
• The imposition of initial conditions induce a similar behaviour, where
the difference lays in the magnitude depending on the model.
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Results-4 (Gravitational potential)

Ψ
/
Ψ

∗

x x x

(i) (ii) (iii)

• The modes with large wave-numbers enter the horizon in the radiation
epoch and decay rapidly, then, remain constant on the matter epoch and
decay rapidly when DE takes over.
• The modes with medium wave-numbers, enter the horizon during the
matter domination era and decay reaching a constant value till the
present time. Finally, in the DE domination epoch decay and vanish.
• The modes with small wave-numbers enter the horizon well inside the
matter era and reaches a plateau, vanishing in the far future.
• As theoretically expected, for the limit k → 0 the modes are suppressed
by a factor of 0.9 during matter domination.
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Results-5 (Matter power spectrum)
P
[ h

−
3
M
p
c3
]

k
[
h Mpc−1

]
k
[
h Mpc−1

]

• In order to compare the models with ΛCDM it s necessary to impose
the same model parameters. We have two set of constants according
with the different fits.
∗ In the left panel: Model (i) and (iii) together to ΛCDM model.
∗ In the right panel: Model (ii) together to ΛCDM model.
• The models (i) and (iii) are indistinguishable from ΛCDM.
• The model (ii) present a very slight deviation from ΛCDM.

Imanol Albarran, Mariam Bouhmadi-López and João Morais
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Results-5 (relative deviation respect to ΛCDM)

• In order to draw a comparison between the models, we compute the
relative deviation with the corresponding ΛCDM model in each case.

|P
−
P

Λ
C

D
M

|
P

Λ
C

D
M

k
[
h Mpc−1

]

∗ Blue curve corresponds to model (i) → induce a BR
∗ Red curve corresponds to model (ii) → induce a LR
∗ Black curve corresponds to model (iii) → induce a LSBR
• For large values of the wave-number k , all models present a constant
difference respect to ΛCDM model while for small values of k the
deviation is smaller. In all cases, the relative deviation is less than a 0.02.
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Results-6 (Growth rate)
f

z z z

(i) (ii) (iii)

• We compute the growth rate of the different models and we compare it
with the latest SDSS III data.
• We quantify the deviation from the observational data by computing
χ2 (A. Balcerzak and T. Denkiewicz ’12).

χ2 =
∑

i

[fobs (zi )− fth (zi )]2

σ2
i

,

• We obtain: χ2
(i) = 5.90, χ2

(ii) = 3.74, and χ2
(iii) = 5.75.
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Conclusions

• In this work, we study the classical perturbations of three different
models of DE that have a phantom character and induce, respectively, a
BR, LR and LSBR.
• Asides from the DM and DE perturbations we compute the matter
power spectrum and growth rate, comparing results with the latests
SDSS III data.
• Although the ΛCDM model gives the best observational fit there is no
strong evidence to disregard the models presented in this talk.
• At late time, the value of the EoS for each model are very similar, in
consequence, the predictions given by each model are nearly identical
which make us difficult to identify the footprint of each one.
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