

# Proposal for change of the reference emittance for the estimate of apertures, DA, etc.

G. Arduini with input from: C. Bracco, R. Bruce, H. Burkhardt, R. De Maria, M. Giovannozzi, J. Jowett, Y. Papaphilippou, S. Redaelli, R. Tomas, F. Velotti

62<sup>nd</sup> WP2 Meeting – 04/03/2016

#### **Status**

- Normalized emittance of 3.5 μm used for:
  - Aperture calculations for protons and ions
  - DA estimates without beam-beam
- Proton nominal emittance of 2.5 μm used for:
  - DA aperture in the presence of beam-beam
  - Normalized beam-beam separation



#### **Proposal**

- Move to a single unit for all the simulations to avoid confusion
- Appropriate scaling of the parameters in sigma so to keep the same "apertures" in mm (defined by the collimation system) is needed
- It is a change of unit like moving from the imperial system to the metric system or the other way round
- Use the sigma corresponding to the nominal normalized r.m.s. transverse emittance of 2.5 µm as unit.



- Minimum Physical Aperture (after subtraction of tolerances):
  - See note: CERN-ACC-2014-0044 for tolerances used in collision.
  - Note under preparation for injection summarizing based on presentations at WP2/5/14 joint meetings and presented at HL-LHC annual meeting:
    - 47<sup>th</sup> HiLumi WP2 (5/8/14) Task Leader Meeting, Friday, 17 April 2015 (R. Bruce and F. Velotti)
    - F. Velotti, Aperture and protection tolerance for the injection into LHC, 5<sup>th</sup>
      Joint HiLumi LHC-LARP Annual Meeting 2015, CERN, 26-30 October
      2015

|           | Old (ε <sub>n</sub> =3.5 μm) | New (ε <sub>n</sub> =2.5 μm) |
|-----------|------------------------------|------------------------------|
| Injection | 9                            | 10.6                         |
| Collision | 12(*)/17                     | 14.2 (*)/20.1                |

(\*) When protected by nearby TCT



## Collimator settings at injection:

|                | Old (ε <sub>n</sub> =3.5 μm) | New (ε <sub>n</sub> =2.5 μm) |
|----------------|------------------------------|------------------------------|
| TCP (LSS7)     | 5.7                          | 6.7                          |
| TCSG (LSS7)    | 6.7                          | 7.9                          |
| TCSTCDQ (LSS6) | 7.5                          | 8.9                          |
| TCDQ (LSS6)    | 8.0                          | 9.5                          |
| TCLD (LSS7)    | 13.0 (tbc)                   | 15.4 (tbc)                   |
| TCLA (LSS7)    | 10.0                         | 11.8                         |
| TCT (LSS1/5)   | 13.0                         | 15.4                         |
| TCP (LSS3)     | 8.0                          | 9.5                          |
| TCSG (LSS3)    | 9.3                          | 11.0                         |
| TCLA (LSS3)    | 10.0                         | 11.8                         |
| TCT (LSS2/8)   | 13.0                         | 15.4                         |
| TDI (LSS2/8)   | 6.8                          | 8.0                          |
| TCLI (LSS2/8)  | 6.8                          | 8.0                          |
|                |                              |                              |

## Collimator settings in collision:

|                | Old ( $\varepsilon_n$ =3.5 $\mu$ m) | New (ε <sub>n</sub> =2.5 μm) |
|----------------|-------------------------------------|------------------------------|
| TCP (LSS7)     | 5.7                                 | 6.7                          |
| TCSG (LSS7)    | 7.7                                 | 9.1                          |
| TCSTCDQ (LSS6) | 8.5                                 | 10.1                         |
| TCDQ (LSS6)    | 9                                   | 10.6                         |
| TCLD (LSS7)    | 10                                  | 11.8                         |
| TCLA (LSS7)    | 10                                  | 11.8                         |
| TCT (LSS1/5)   | 10.5                                | 12.4                         |
| TCL (LSS1/5)   | 12                                  | 14.2                         |
| TCP (LSS3)     | 15                                  | 17.7                         |
| TCSG (LSS3)    | 18                                  | 21.3                         |
| TCLA (LSS3)    | 20                                  | 23.7                         |
| TCT (LSS2/8)   | 30                                  | 35.5                         |

Minimum Dynamic Aperture (no beam-beam):

|           | Old (ε <sub>n</sub> =3.5 μm) | New (ε <sub>n</sub> =2.5 μm) |
|-----------|------------------------------|------------------------------|
| Injection | 10                           | 11.8                         |
| Collision | 10                           | 11.8                         |

Minimum Dynamic Aperture\* (with beam-beam):

|           | Old (ε <sub>n</sub> =2.5 μm) | New (ε <sub>n</sub> =2.5 μm) |
|-----------|------------------------------|------------------------------|
| Collision | 6                            | 6                            |

# No Change

(\*) At injection and in the other phases before collision we assume that beam-beam is negligible. Should we quantify better this request?



#### Long range beam-beam separation

Minimum normalized long range beam-beam separation

|           | Old (ε <sub>n</sub> =2.5 μm) | New (ε <sub>n</sub> =2.5 μm) |
|-----------|------------------------------|------------------------------|
| Collision | 12.5                         | 12.5                         |

# No Change



#### To note

- The above parameters are acceptable also for:
  - Scrubbing at injection when larger emittances are expected ( $\epsilon_n$ =3.75  $\mu$ m)
  - Ion operation ( $\epsilon_n$ =1.5  $\mu$ m) having the same physical emittance of a proton beam with  $\epsilon_n$ =3.75  $\mu$ m for equivalent magnetic field in the magnets.



#### **Questions / Comments**

- Question form Yannis: Is our target of 6 sigma dynamic aperture (minimum value achieved at minimum β\*) consistent with our TCP opening of 6.7 σ?
- Comment from Stefano: We should round the numbers for the target values (granularity of 0.5 σ?)



