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Head-on interactions

= Frequency of coherent beam-beam modes
= Trade-off Landau damping vs. decoherence
= Landau damping of head-tail modes

LHC and HL-LHC phase advances
Long-range interactions

Orbit effect

Conclusions



@ Single head-on interaction

= Two identical beams Q. =Q,
= One bunch per beam

T 11 (rigid bunch) o

= One head-on interaction
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= Coupled modes are
outside of the
Incoherent spectrum

Symmetry breaking
tends to decouple the
beams (bunch to bunch

variations of the intensity/emittance,
asymmetric configurations of IPs)

'‘decoupled’ modes are
Inside the incoherent
spectrum
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2 interaction points

Phase split without global tune change
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@ Landau damping

Symmetric Anti-symmetric

= The presence of an overlap
between the coherent mode
spectrum and the incoherent
spectrum is a necessary
condition for Landau damping

= The circulant matrix model

(BimBim) allows to derive the T i e S0 A=0.5-0.0
complex tune of beam-beam- \ AQK] —
head-tail modes in the oo
presence of impedance

= No dispersion relation
available

Spectrum arbitrary units

— Landau damping is }
quantified with multiparticle AZ |
tracking simulations (COMBI) i)\




@ Landau damping of
A

head-tail modes LIRS
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= HL-LHC beam parameters

= Two interaction points with
symmetric phase advances

= Mitigation
= Transverse feedback

= Chromaticity

= Mirrored tune (or other
asymmetries)
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@ Landau damping of
A

head-tail mode

= Fully self-consistent macro-
particle simulation (COMBI)

= HL-LHC beam parameters
= LHC impedance model

= Two interaction points with
symmetric phase advances

= Loss of landau damping
from the octupoles

= Mitigation
= Transverse feedback

= Chromaticity

= Mirrored tune (or other
asymmetries)
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@ Landau damping of
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@ Landau damping of
A

head-tail modes (bt
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Decoherence

10=7 =002

The decoherence mechanism
is different in the weak-strong

(V.A. Lebedev) and strong-
strong (Y. Alexahin) regime

= The damper is more efficient to
reduce decoherence in the
strong-strong regime

= When the modes are inside the
Incoherent spectrum, the
decoherence is 'weak-strong' like

Complex configurations have to
be addressed with simulations

Important trade-off :

Landau damping vs. emittance
growth due to external noise
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The LHC phase advances are anti-

symmetric in the horizontal plane (ao_ =
particle simulation

-Ad_=0.35) and close to the symmetric
configuration in the vertical (ao_ =0.02

A®_=0.2)
= Visible in fully self-consistent macro-
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HL-LHC phase
2 advances
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= Symmetry left/right imposed by the ATS optics
—0.8

= From the point of view of beam-beam
interactions the phase advances are anti-
symmetric

= The horizontal phase advances are close to
a symmetric condition (A®_, =-A®_ =0.11)

Amplitude [a.u.]
|
=

= The vertical phase advances are very anti-
symmetric (A®_, = -AdD_=0.42)
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LR in IP1 (vertical Xing) LR in IP5 (horizontal Xing)

LR in IP1&5
SymmetrﬁA |

L

q)Bl,S-l | |
0.300 0.305 0.310 0.315 0.320
Tune
Anti-
symmetric: |
Lumped long-
range interactions
0.300 0.305 0.310 0.315 0.320
1 bunch train of 3 bunches per beam (PACMAN) Tune

Passive compensation of the tune shift due to long-range interactions for

symmetric configuration

— Broken for the coherent modes in asymmetric configurations, but not for the

single particles (i.e. the coherent modes are outside of the incoherent spectrum)



@ Head-on and long-range <«

Symmetric
Anti-symmetric

~10 -08 =06 —04 —02 0.0
Tune shift [gtot]

= In symmetric configurations the frequency of the long-range
modes are close to the ones driven by head-on

= No longer the case for asymmetric configurations

= Emittance growth due to decoherence is dominated by
head-on interactions



@ LHC coherent spectrum

Nominal LHC coherent mode spectrum in the horizontal plane

0.296 0208  0.300 0.302@ 0.304 0.306 0.308  0.310
= The coherent mode spectrum of the LHC is complex, mostly due to
IP2&8 which, due to their location, breaks the symmetry and couple all

bunches together

= Multibunch coherent beam-beam modes are very sensitive to
bunch to bunch variations

— |In operation, all modes are inside the incoherent spectrum
regardless of the phase advances

— Coherent beam-beam modes were only observed in MD with
simplified machine configuration



I@‘i HL-LHC coherent spectrum
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= Discarding IP2&8, the impact of the phase advance becomes
relevant
= |f IP2 or 8 beam-beam effects are comparable to IP1&5 (i.e. strong long-

range or head with small offset), we fall back into the LHC configuration

= Should we de-symmetrise the horizontal plane or symmetrise
the vertical plane (or status quo) ?

= Beneficial effect of the symmetry on the emittance preservation should
be quantified and investigated in MDs

= Stability limits and mitigation techniques should be quantified and
iInvestigated in MDs
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= The orbit effect is *§ - AVAVAV:
symmetric for both beams = 00 | | |
(i.e. left of one is identical to & —
left of the other) - I M Y=
(%_0_4 f\jf \\jf \'\\j/*f o

LHead
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-- Spread ||
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Phase advance from the IP [27]

= The orbit of PACMAN bunches may result in

luminosity l0Ss (~5%, less with B* leveling) IN the opposite IP

= With symmetric phase advances, all bunches collide head-on in

both experiments (possibly on different orbits)

= With asymmetric phase advances, this effect cannot be fully
mitigated in the opposite IP




Conclusion

= The (anti)symmetry in the phase advances of the two beams
imposed by the ATS does not impose constraint on the coherent
beam-beam dynamics

= There are fewer symmetry breaking in beam-beam interactions in the
HL-LHC with respect to the LHC

— Potential issue with Landau damping of coherent beam-beam modes

= Both the transverse feedback and chromaticity are efficient mitigations — The
limits needs to be quantified in different configurations (i.e. squeeze / adjust /
stable beam)

= Mirrored tune / asymmetric phase advances could be backup solutions that
suppress the coherent modes while keeping the same incoherent dynamics

— Potential reduction of the emittance growth due to external noise
= Noise studies (J. Barranco, et al) to be continued

= Experimental tests are needed

= |s there a best choice from the point of view of DA ?
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"
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Mode coupling instability MD
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