## Looking for New Physics Run2 LHC

Veronica Sanz (Sussex)<br>Invisiblesl5 (Madrid)

## Outline

- Run1
- Run2
- Where is New Physics?
- How do we probe the unknown
- Direct vs indirect
- Complementarity of LHC

Runl

## After Runl SM healthier than ever



## After Runl

Higgs is here,
lots of rumours, some 3 sigmas e.g. di-boson resonance at 2 TeV


## After Runl

## Experiments are not just focused on Higgs and vanilla SUSY

ATLAS Exotics Searches＊－95\％CL Exclusion
Status：March 2015

| Status：March 2015 |  |  |  |  |  |  |  | $\int \mathcal{L} d t=(1.0-20.3) \mathrm{fb}^{-1}$ | $\sqrt{s}=7,8 \mathrm{TeV}$ <br> Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Model | $\ell, \gamma$ | Jets | $\mathrm{E}_{\mathrm{T}}^{\text {miss }}$ | $\int \mathcal{L d t}[\mathrm{ff}$ |  | Mass limit |  |  |
|  | ${ }^{\text {ADO }} G_{R K K}+g / q$ | － | 21） | Yes | 20.3 | M | 5.25 TeV | $n=2$ | $15 \times 0.01510$ |
|  | ADO non－esomant $/ l$ | 2e，$\mu$ | － | － | 20.3 | Ms | 4.7 TeV | $n=3$ HIZ | H07．2410 |
|  | $A C O$ CBH $\rightarrow$ Cq | 1 e．p | 1 j | － | 20.3 | M | 5．2 TeV | $n=6$ | 1311.2006 |
|  | ACO CBH | － | 2） | － | 20.3 | M | 5.82 TeV | $n=6$ | 1007．15\％ |
|  | ADO BH high $N_{\text {cis }}$ | $2 \mu$（SS） | ， | － | 20.3 | M | 4.7 TeV | $n=6 . M_{0}=3$ tek nomeder | 15084075 |
|  | A00 BH high इ Pr | $\geq 1 \mathrm{e} . \mu$ | $\geq 2 i$ | － | 20.3 | M | 5.8 TeV | $n=6 . M_{0}-3$ tek noned Ein | 1405．4254 |
|  | ADO BHy high multjex | － | $\geq 2 i$ | － | 20.3 | M | 5.8 TeV | $n=6 . M_{0}=3 \mathrm{Tek}$ noned $\mathrm{BH}^{\text {H }}$ | Pretrinay |
|  | RS1 $G_{\text {KKX }} \rightarrow u$ | $2 e . p$ |  | － | 20.3 | $\mathrm{G}_{\mathrm{kxx}}$ mas | 2.68 TeV | $k / M_{n}=01$ | M05418 |
|  | RSI $\mathrm{Grox}_{\text {r }} \rightarrow \gamma$ | $2 \gamma$ | － | － | 20.3 | $\mathrm{G}_{\mathrm{kx}}$ max | 2.66 TeV | $k / \bar{M}_{n}=0.1$ | Peetrinuy |
|  | Buk RS $\mathrm{Grax}^{\text {a }} \mathrm{ZZ} \rightarrow$ gott | $2 e, \mu$ | $21 / 1 \mathrm{~J}$ | － | 20.3 |  | 740 GoV | $k / \bar{M}_{\text {A }}=10$ | 100．6190 |
|  | Bulk RS GYKX $\rightarrow W_{W} \rightarrow$ quir | 1 e．p | $2 \mathrm{j} / 1 \mathrm{~J}$ | Yes | 20.3 | W mass | 700 CeV | $k / \bar{M}_{n}=10$ | 1508.0467 |
|  |  | － | 4b | － | 19.5 | $G_{\text {rxx mass }}$ | 550.710 GeV | $k / \bar{M}_{n}=10$ | ALASCON－20H－005 |
|  | Buk RS $\mathrm{grox}^{\text {ctit}}$ | $1 \mathrm{e}, \mu$ | $\geq 1 \mathrm{~b}, \geq 1 \mathrm{da}$ | Y Yes | 20.3 | 8 Sex miss | 22 TeV | BR＝0．05 | NLSSCON－2015－000 |
|  | ZUED／RPP | 2 e．jp（SS） | $\geq 1 \mathrm{~b}, 21 \mathrm{j}$ | Yes | 20.3 | KKıns | 960 GeV |  | Pederinay |
|  | ssm ${ }^{\prime} \rightarrow$ 仡 | $2 e, \mu$ | － | － | 20.3 | $\underline{2}$ | 2.9 TeV |  | н0¢．423 |
|  | $\operatorname{ssm} Z^{\prime \prime} \rightarrow \pi$ | 27 | － | － | 19.5 | Z T \％ss | 2.02 TeV |  | $15 \times 2.07177$ |
|  | $\operatorname{ssm} W^{\prime \prime} \rightarrow$ cr | 1 e．$\mu$ | － | Yes | 20.3 | Wr mas | 3.24 TeV |  | 1407.7994 |
|  | EGM $W^{\prime \prime} \rightarrow W Z \rightarrow V^{\prime} C c^{\prime}$ | 3 e，$\mu$ | － | Yes | 20.3 | W mas | 1.52 TeV |  | нов．456 |
|  | EGM W ${ }^{\text {V }} \rightarrow W Z \rightarrow$ qudl | 2e．p | 21／1J | － | 20.3 | W mas | 1.59 TeV |  | H09．6190 |
|  | HVT $W^{\prime} \rightarrow$ WH $\rightarrow$ crbb | 1 e．，$\mu$ | 2b | Yes | 20.3 | W mas | 1．47 TeV | sv $=1$ | Petarinosy |
|  | LASM $W_{r}^{\prime} \rightarrow t \bar{b}$ | 1 e，$\mu$ | 2b，0．1］ | Yes | 20.3 | W mas | 1.98 TeV |  | нгания |
|  | LASM $W_{R}^{\prime} \rightarrow t \bar{b}$ | 0 e．$\mu$ | $\geq 1 \mathrm{~b}, 1 \mathrm{~J}$ | － | 20.3 | W mas | 1.76 TeV |  | H080895 |
| उ | Cl gegg | － | 2） | － | 17.3 | $\triangle$ |  | 120 TeV 昛 $=-1$ | Peetrinay |
|  | Cl goll | $2 e, \mu$ | － | － | 20.3 | A |  | 21.5 TeV TL $=-1$ | น07．2410 |
|  | Cl untt | 2 e．j（SS） | $21 \mathrm{~b}, 21 \mathrm{j}$ | Yes | 20.3 | A | 4.35 TeV | $\left\|\mathcal{C u t}^{\prime}\right\|$ | Petarinusy |
| \％ | EFT D5 cpeentor（Dirac） | 0 e，$\mu$ | $\geq 11$ | Yes | 20.3 | M， | $974 \mathrm{GeV} \quad 2.4 \mathrm{TeV}$ | at 90\％Cl berm（ $x$ ）＜ 100 gev | $15 \times 0.01518$ |
|  | EFT D9 cpemor（Disac） | 0 e．al | $1 \mathrm{~d} \leq 1 \mathrm{j}$ | Yes | 20.3 | M． |  | an90\％Clarm（ $)<100 \mathrm{GeV}$ | 1309.4017 |
| 9 | Scular LQ 1＂${ }^{\text {a }}$ g | $2 e$ | $\geq 21$ | － | 1.0 | LOmuss | 650 GeV | $\beta=1$ | 1112451810 |
|  | Scourar LQ $2^{24}$ gen | $2 \mu$ | $\geq 2 i$ | － | 1.0 | Lomas | 685 GeV － | $\hat{p}=1$ | 1200.3172 |
|  | Scalar LQ $3^{-1}$ gen | 1 e．，$\mu .1$ T | 1b．1j | － | 4.7 | Lomas | 534 GeV | $\beta=1$ | ${ }^{1303.0593}$ |
|  | va TT $\rightarrow \mathrm{Ht}+\mathrm{X} . \mathrm{Wb}+\mathrm{X}$ | $1 e . \mu$ | $\geq 1 \mathrm{~b}, 231$ | Yet | 20.3 | T mess | 785 GeV | iscopin siogkt |  |
|  | $\mathrm{Va} T T \rightarrow Z t+X$ | $2 \mathrm{c} 3 \mathrm{e} . \mu$ | $\geq 22 \geq 1 \mathrm{~b}$ | － | 20.3 | Tmess | 735 CoV | In（ 5,8 ）dasiost |  |
|  | vo $B B \rightarrow Z b+X$ | $2 ¢ 3 e . \mu$ | $22<10$ | － | 20.3 | $\square^{81}$ mexs | 755 GeV |  |  |
|  | no $B B \rightarrow W /+X$ | 1 e．j $\mu$ | $\geq 16, \geq 51$ | Yes | 20.3 | B mass | 640 GeV | lseppen sighet |  |
|  | $T_{513} \rightarrow$ Wt | 1 e．ja | $\geq 1 \mathrm{~b} \geq 5 \mathrm{j}$ | Ves | 20.3 | Tsomea | 840 GeV |  |  |
| 名 |  | $1 \%$ | 1） | － | 20.3 | $q^{+}$ | $3.5 \mathrm{TeV}$ |  | 1300.5030 |
|  | Exetied quark $\mathrm{q}^{*} \rightarrow$ as | 1ot 2 e．， $1 \mathrm{lb}, 2 \mathrm{joc} 1 \mathrm{j}$ |  | － | 20.3 | $\mathrm{q}^{\text {q }}$ |  |  | 1407． 1376 |
|  | Exched quark $b^{\prime} \rightarrow W$ t |  |  | i）Yes | 4.7 | $\mathrm{b}^{+} \mathrm{mes}$ |  | letitwobed coypthy | r300． 1588 |
|  | Exctied lepton $c^{\prime} \rightarrow l^{\prime}$ | $2 e, e^{\prime}, 1 \gamma$ | － | － | 13.0 | C mas | ${ }_{1.6 \mathrm{TeV}} 22 \mathrm{Tol}$ | $\mathrm{A}=2.2 \mathrm{TeV}$ | 13001364 |
|  | Excted lepton $r^{*} \rightarrow\langle W, \sim Z$ | 3e．$\mu$ ，\％ | － | － | 20.3 | C mas |  | $A=1.6 \mathrm{TeV}$ | 1411.2921 |
| ${ }_{\text {¢ }}{ }^{\text {® }}$ | LSTC at $\rightarrow$ W\％ | $1 e, \beta_{0} 1 \gamma$ | － | Yet | 20.3 | ar mas | 960 GeV |  | н07．0150 |
|  | LSSM Majormar | 2 e．ja | 2 j | － | 21 | $\mathrm{N}^{\prime}$ mass | 1.5 TeV | $m\left(W_{r}\right)=2 \mathrm{TeV}$ ，no mieing | 1200.5420 |
|  | Hogs triplet $\mathrm{H}^{+*} \rightarrow$ U | $2 e . \mu(S S)$ | － | － | 20.3 | $\mathrm{H}^{\text {¹ mas }}$ | 551 CeV |  | $14120 \times 37$ |
|  | Hoss triplet $\mathrm{H}^{2 n} \rightarrow\langle\tau$ | 3e，$\mu$ ， T | － | － | 20.3 |  | 400 GoV |  | 1411.2021 |
|  | Menctop（nen－es prod） | 1 e．p | 1 b | Yes | 20.3 | Sph－1 miskepatiemus | 657 GeV | $\alpha_{\text {ancm }}=02$ | 140．5404 |
|  | Muls－charged partides | － | － | － | 20.3 |  | 785 ceV | Or podicion，id－Se | Peterinary |
|  | Magretio monopdies | － | － | － | 20 | monycio mass | 862 CeV | OV prodition，Lsf $=1$ go | 1200．en11 |
|  |  | $\sqrt{5}=7 \mathrm{TeV}$ |  | $\sqrt{5}=8 \mathrm{TeV}$ |  | －10 | 1 |  |  |
|  |  |  |  | $10^{-1}$ | 10 Mass scale［TeV］ |  |  |  |  |

## After Runl

Challenging/excluding many scenarios as a reaction, theorists providing avoiders e.g. fasionable
neutral naturalness

|  | scalar | fermion |
| :---: | :---: | :---: |
| colored | SUSY | CH/RS |
| EW | Folded SUSY | Quirky Little <br> Higgs |
| singlet | $?$ | Twin Higgs |

D. Curtin's talk, CERN workshop
relaxions


Graham, Kaplan, Rajendran. 1504.07551

## Some have a feeling of doom


which I don't share

## Game is just starting, even for Natural SUSY

## e.g. limits on stops




## Game is just starting, even for Natural SUSY

Exclusion limit 100\% to 2-body


Exclusion limit, BR 20\% to 2-body

combining channels ( 2,3 and 4 body)
very limited reach for most of the parameter space

## Same goes for HEFT

e.g. Ellis, VS and You. 1404.3667, 1410.7703
one-by-one global

| Operator | Coefficient | $\begin{gathered} \text { LHC } \\ \text { Individual } \end{gathered}$ | Marginalized |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathcal{O}_{W}=\frac{i g}{2}\left(H^{\dagger} \sigma^{a} \stackrel{\leftrightarrow}{D^{\mu}} H\right) D^{\nu} W_{\mu \nu}^{a} \\ \mathcal{O}_{B}=\frac{i g^{\prime}}{2}\left(H^{\dagger} \stackrel{\leftrightarrow}{D^{\mu}} H\right) \partial^{\nu} B_{\mu \nu} \end{gathered}$ | $\frac{m^{2}}{\Lambda^{2}}\left(c_{W}-c_{B}\right)$ | (-0.022, 0.004) | ( $-0.035,0.005$ ) |
| $\mathcal{O}_{H W}=i g\left(D^{\mu} H\right)^{\dagger} \sigma^{a}\left(D^{\nu} H\right) W_{\mu \nu}^{a}$ | $\frac{m_{\text {N }}^{2}}{\Lambda^{2}} c_{H W}$ | ( $-0.042,0.008$ ) | ( $-0.035,0.015$ ) |
| $\mathcal{O}_{H B}=i g^{\prime}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}$ | $\frac{m_{\text {wn }}{ }^{2} c^{2}}{} c_{H B}$ | $(-0.053,0.044)$ | ( $-0.045,0.075$ ) |
| $\mathcal{O}_{3 W}=\frac{1}{3!} g \epsilon_{a b c} W_{\mu}^{a \nu} W_{\nu \rho}^{b} W^{c \rho \mu}$ | $\frac{m_{\text {wl }}^{2}}{\Lambda^{2}} c_{3 W}$ | $(-0.083,0.045)$ | $(-0.083,0.045)$ |
| $\mathcal{O}_{g}=g_{s}^{2}\|H\|^{2} G_{\mu \nu}^{A} G^{A \mu \nu}$ | $\frac{m_{\text {w }}^{2}}{\Lambda^{2}} c_{g}$ | $(0,3.0) \times 10^{-5}$ | $(-3.2,1.1) \times 10^{-4}$ |
| $\mathcal{O}_{\gamma}=g^{\prime 2}\|H\|^{2} B_{\mu \nu} B^{\mu \nu}$ | $\frac{m_{1}^{2}}{\Lambda^{2}} c_{\gamma}$ | $(-4.0,2.3) \times 10^{-4}$ | $(-11,2.2) \times 10^{-4}$ |
| $\mathcal{O}_{H}=\frac{1}{2}\left(\partial^{\mu}\|H\|^{2}\right)^{2}$ | $\frac{v^{2}}{\Lambda_{2}^{2}} c_{H}$ | $(-0.14,0.194)$ | $(-,-)$ |
| $\mathcal{O}_{f}=y_{f}\|H\|^{2} \bar{F}_{L} H^{(c)} f_{R}+$ h.c. | $\frac{v^{2}}{\Lambda^{2}} c_{f}$ | $\begin{aligned} & (-0.084,0.155)\left(c_{u}\right) \\ & (-0.198,0.088)\left(c_{d}\right) \end{aligned}$ | $\begin{aligned} & (-,-) \\ & (-,-) \end{aligned}$ |

stronger in classes of models e.g. extended Higgs sectors Gorbahn, No, VS. 1502.07352
$\bar{\sigma}^{\bar{c}} \bar{c}_{W} \in-(0.02,0.0004)$
$\stackrel{\circ}{\circ} \bar{c}_{g} \in-(0.00004,0.000003)$
${ }^{\circ} \bar{o}^{\circ} \bar{c}_{\gamma} \in-(0.0006,-0.00003)$

Run2

Run2 more lumi and energy
foundation more precise, better ways of testing the Standard Model
't Hooft, Veltman, Weinberg...

## e.g. top coupling to the Higgs

e.g. total rates to differential distributions H+jets, VV distributions, shower models

Run2 more lumi and energy
foundation more precise, better ways of testing the Standard Model

## Enthusiasm and dedication of the community

ground-breaking discovery challenges our understanding of Nature new particles, new principles
e.g. SUSY particles, hidden sector, QG effects, quasi-conformal strong dynamics...

This is not just wishful thinking we know the SM is not the ultimate theory

## Evidence

Dark Universe Neutrinos Baryogenesis

Run 2 has the potential to shed light on the origin of these observations
and on theoretical conundrums (e.g. naturalness)

Where is New Physics?

BUT we are talking about going
From the Higgs, a particle with known couplings and a mass in a definite range

backin 2000's

To the unknown


BUT we are talking about going
From the Higgs, a particle with known couplings and a mass in a definite range

back in 2000's

To the unknown
aesthetical arguments as naturalness/tuning are not on the same footing as violation of unitarity precision tests are perfectly okay with no new physics at the EW scale

BUT we are talking about going
From the Higgs, a particle with known couplings and a mass in a definite range

back in 2000's

To the unknown

The bottom-line we do not know what/where New Physics is

## How do we probe the unknown? <br> Business as usual

Jumping into the unknown by searching for a resonance or an excess / deficit

## DIRECT

## INDIRECT

## as many final states and distributions as possible

if theory motivation: ask the theorist

Effective Field Theory mass reach higher than direct more theory-inclusive

A lot more work needed, differential distributions
essential
e.g. EFT and diff distributions for Run1 Ellis, VS, You. 1410.7703

# Direct searches of colored states could lead to an early discovery at LHC13 



## Indirect searches could lead to a discovery of New Physics

E.g. a non-resonant excess in diboson production

1410.7703

EFT -> UV models
correlations with other signals could point a specific scale

## Direct vs Indirect

## The balance between direct and indirect

## example


e.g. extended Higgs sectors

e.g. dark photon

$\gamma \quad \gamma_{D}$

## The balance between direct and indirect


$g_{N P}$ : tree-level or loop-suppressed coupling

$$
\begin{aligned}
& \text { Indirect searches } \\
& \text { limited by precision }
\end{aligned} \quad g_{N P}^{2} \frac{v^{2}}{M^{2}}
$$

## Direct searches

kinematic reach
M

## The balance between direct and indirect


(200
ENERGY

## The balance between direct and indirect




## The balance between direct and indirect


hidden sector

or loop-induced
e.g. dark photon

# Complementarity of LHC 

How do we probe the unknown with no compass?

> Business as usual
> test boundaries of the SM, hoping for something unusual to come up

How do we probe the unknown with no compass?

## Business as usual

test boundaries of the SM, hoping for something unusual to come up

## Additionally we should

 actively extend the reach of searches by looking out to non-LHC experiments/ observationsWhy?

Hints of New Physics could come from the connection between colliders with other areas

## e.g. The Dark Matter connection

## Direct detection



## Indirect detection




1402.6703

## e.g. The Dark Matter connection





## $\frac{1}{\Lambda^{2}} \bar{\chi} \gamma_{\mu} \chi \bar{q} \gamma^{\mu} q$

DM
SM
med
e.g. The Dark Matter connection

Is not through this kind of analysis

no meaning of a mediator

Buchmueller, Dolan and McCabe. 1308.6799

## e.g. The Dark Matter connection

But it is perfectly valid to explore specific models, in which an EFT is not applicable, e.g. SUSY DM


Barducci, Bharucha, Belayev, Porod VS. 1504.02472
e.g. The Dark Matter connection

Relic abundance sets limits on precision required at colliders



## e.g. The Dark Matter connection

Excess in gamma-rays can be translated into a mass and a coupling to SM particles: colliders



Hooper et al. 1402.6703

## e.g. The Dark Matter connection

## Measurement of the CMB complements DD further restricting DM searches



Plack results. 2014.

## e.g. The Axion connection



Mimasu, VS. 1409.4792

## Conclusions

- Run1 was the run of the SM, establishing its consistency as an effective theory with the Higgs discovery
- Run2 is diving in the unknown BSM territory, exciting and quite more difficult task. The increased lumi and energy in Run2 may just be what we need to discover BSM
- Discovery through direct and indirect searches should go beyond extending Run1 measurements
- LHC Direct: extend final states such as displaced vertices
- LHC Indirect: lots more experimental work needed for EFT
- A different route: looking out to other experiments / observations. Complementarity with Astro/Cosmo/Neutrino / Axions needs more exploring. It may bring new ideas to the field, plus prepare for discovery interplay


## EFT affects momentum dependence: angular, pT and inv mass distributions

## Usual searches,


ex. dijet searches

Dijet angular distribution

## EFT affects momentum dependence: angular, pT and inv mass distributions

## Usual searches,


leading lepton pT
ex. TGCs
kinematic distribution best way to bound TGCs
growth at high energies cutoff: resolve the dynamics of the heavy

NP

## Kinematics of associated production at LHC8

Ellis,VS and You. 1404.3667, 1410.7703



Feynrules -> MG5-> pythia->Delphes3
verified for $\mathrm{SM} / \mathrm{BGs}=>$ expectation for EFT
inclusive cross section is less sensitive than distribution

## TGCs constrains new physics too

Ellis,VS and You. 1404.3667, 1410.7703


ATLAS-CONF-2014-033

overflow bin
we followed same validation procedure-> constrain EFT
breaking blind directions requires information on VH production

Global fit


Do we need NLO for Run2?

## NLO QCD

 Clearly important
## VH, VBF, H+jet, WW


see d.SO
Maltoni et al. 1306.6464, 1311.1829,1407.5089,1503.01656 Spira et al. 1407.7971 (SUSY) Grazzini et al. 1107.1164
Cansino, Banfi. 1207.0674...

## EFT NLO QCD

Processes involving EFT operators with quarks quite sensitive to operator mixing e.g. top to Higgs and light quark

Zhang and Maltoni 1305.7386

More details on RG mixing and finite terms later on (Trott, Passarino) as well as issues of the basis (-> Rosetta)

## SM NLO EW





## Billoni et al. 1310.1564

# LH: discussion on how universal Sudakov logs are 

leading: Spira

## aMC@NLO: beta version <br> with SM EW correction

(Pagani, Zaro)

## EFT Higgs BRs eHDECAY

Contino et al. 1303.3876, 1403.3381
State-of-the-art
incl. most important QCD / EW corrections

New at LH

## Rosetta

Higgs: SILH: Warsaw

param_card (in any basis)-> eHDECAY-> param_card with BRs from eHDECAY

A concrete example NLO EFT: VH

## EFT NLO QCD

## IMCFMM\&POWHEG

## alMC@NLO



Mimasu, VS, Williams. in prep

deGrande, Fuks, Mawatari, Mimasu, VS. in prep

## At Les Houches: your input

twiki EFT Higgs
https: / / phystev.cnrs.fr/ wiki/ 2015:groups:higgs:efthiggs
Document highlighting situations where NLO is required / missing (with SM session)

Comparison shower matching POWHEG \& aMC@NLO
-> identify less sensitive distributions
(other tools, implementations?)

Thank you!

## NLO calculations with MADGRAPH5_aMC@NLO

## Effective field theories at NLO (in QCD)

- Non-renormalizable?
$\star$ No: renormalization order by order in $1 / \boldsymbol{\Lambda}^{2}$
$\%$ Precision?
$\star$ Yes: including the QCD corrections


Issue: operator mixings
$\boldsymbol{*}$ The structure of a given operators can be generated from another operator
$\star$ Example: gtu (NLO-QCD) corrections to the $\gamma$ tu operator


EFT@LO


EFT@NLO


EFT@NLO

ヶ In full generality, we may need to include all operators allowed by gauge invariance...

## III $e \mathcal{H} \mathcal{D E C \mathcal { C } \mathcal { Y }}$

- $h \rightarrow f \bar{f}$ :

$$
\begin{aligned}
\left.\Gamma(\bar{\psi} \psi)\right|_{S I L H} & =\Gamma_{0}^{S M}(\bar{\psi} \psi)\left[1-\bar{c}_{H}-2 \bar{c}_{\psi}+\frac{2}{\left|A_{0}^{S M}\right|^{2}} \operatorname{Re}\left(A_{0}^{* S M} A_{1, e w}^{S M}\right)\right]\left[1+\delta_{\psi} \kappa^{Q C D}\right] \\
\left.\Gamma(\bar{\psi} \psi)\right|_{N L} & =c_{\psi}^{2} \Gamma_{0}^{S M}(\bar{\psi} \psi)\left[1+\delta_{\psi} \kappa^{Q C D}\right]
\end{aligned}
$$

$A_{0}^{S M}$ : SM tree-level amplitude
$A_{1, e w}^{S M}$ : SM elw. amplitude [real corrections treated analogously]

- factorization of QCD $\leftrightarrow$ elw. [limit small $m_{h}$ ]
- NL: no elw. corrections!
- other decay modes analogous

Production rates and kinematic distributions
depend on cuts
need radiation and detector effects Simulation tools
coefficients

$$
\mathcal{L}_{e f f}=\sum_{i} \frac{f_{i}}{\Lambda^{2}} \mathcal{O}_{i}
$$

## Collider simulation

observables

> Limit coefficients
> $=$ new physics

The guide to discover New Physics may come from precision, and not through direct searches

The guide to discover New Physics may come from precision, and not through direct searches

New Physics could be heavy as compared with the channel we look at Effective Theory approach

The guide to discover New Physics may come from precision, and not through direct searches

New Physics could be heavy as compared with the channel we look at Effective Theory approach
Example.


2HDMs


$$
\left(H^{\dagger} \sigma^{a} D^{\mu} H\right) D^{\nu} W_{\mu \nu}^{a}
$$

## EFT

## Bottom-up approach

operators w/ SM particles and symmetries, plus the newcomer, the Higgs

Buchmuller and Wyler. NPB (86)
$\mathcal{L}_{B S M}=\mathcal{L}_{S M}+\mathcal{L}_{d=6}+\ldots$

## HDOs

modification of couplings of SM particles

Many such operators, but few affect the searches we do

## EFT

## Bottom-up approach

operators w/ SM particles and symmetries, plus the newcomer, the Higgs
Many such operators but few affect the searches we do

Example 1. LEP physics

Ellis, VS, You. 1410.7703

| Operator |
| :---: |
| $\begin{aligned} & \mathcal{O}_{W}=\frac{i g}{2}\left(H^{\dagger} \sigma^{a} \stackrel{\leftrightarrow}{D^{\mu}} H\right) D^{\nu} W_{\mu \nu}^{a} \\ & +\quad \mathcal{O}_{B}=\frac{i g^{\prime}}{2}\left(H^{\dagger} \stackrel{\leftrightarrow}{D^{\mu}} H\right) \partial^{\nu} B_{\mu \nu} \end{aligned}$ |
| $\mathcal{O}_{T}=\frac{1}{2}\left(H^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} H\right)^{2}$ |
| $\mathcal{O}_{L L}^{(3) l}=\left(\bar{L}_{L} \sigma^{a} \gamma^{\mu} L_{L}\right)\left(\bar{L}_{L} \sigma^{a} \gamma_{\mu} L_{L}\right)$ |
| $\mathcal{O}_{R}^{e}=\left(i H^{\dagger} \overleftrightarrow{D}_{\mu} H\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right)$ |
| $\mathcal{O}_{R}^{u}=\left(i H^{\dagger} \vec{D}_{\mu} H\right)\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right)$ |
| $\mathcal{O}_{R}^{d}=\left(i H^{\dagger} \stackrel{\overleftrightarrow{D}}{\mu} H\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)$ |
| $\mathcal{O}_{L}^{(3) q}=\left(i H^{\dagger} \sigma^{a} \widehat{D}_{\mu} H\right)\left(\bar{Q}_{L} \sigma^{a} \gamma^{\mu} Q_{L}\right)$ |
| $\mathcal{O}_{L}^{q}=\left(i H^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} H\right)\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)$ |

Anomalous couplings vs EFT

HDOs generate HVV interactions with more derivatives parametrization in terms of anomalous couplings

Example. Higgs anomalous couplings
$-\frac{1}{4} h g_{h V V}^{(1)} V_{\mu \nu} V^{\mu \nu}-h g_{h V V}^{(2)} V_{\nu} \partial_{\mu} V^{\mu \nu}-\frac{1}{4} h \tilde{g}_{h V V} V_{\mu \nu} \tilde{V}^{\mu \nu}$

HDOs generate HVV interactions with more derivatives parametrization in terms of anomalous couplings

Example. Higgs anomalous couplings
$-\frac{1}{4} h g_{h V V}^{(1)} V_{\mu \nu} V^{\mu \nu}-h g_{h V V}^{(2)} V_{\nu} \partial_{\mu} V^{\mu \nu}-\frac{1}{4} h \tilde{g}_{h V V} V_{\mu \nu} \tilde{V}^{\mu \nu}$

Feynman rule for $m h>2 m V$


$$
\begin{gathered}
i \eta_{\mu \nu}\left(g_{h V V}^{(1)}\left(\frac{\hat{s}}{2}-m_{V}^{2}\right)+2 g_{h V V}^{(2)} m_{V}^{2}\right) \\
-i g_{h V V}^{(1)} p_{3}^{\mu} p_{2}^{\nu} \\
-i \tilde{g}_{h V V} \epsilon^{\mu \nu \alpha \beta} p_{2, \alpha} p_{3, \beta}
\end{gathered}
$$

HDOs generate HVV interactions with more derivatives parametrization in terms of anomalous couplings

Example. Higgs anomalous couplings
$-\frac{1}{4} h g_{h V V}^{(1)} V_{\mu \nu} V^{\mu \nu}-h g_{h V V}^{(2)} V_{\nu} \partial_{\mu} V^{\mu \nu}-\frac{1}{4} h \tilde{g}_{h V V} V_{\mu \nu} \tilde{V}^{\mu \nu}$

Feynman rule for $\mathrm{mh}>2 \mathrm{mV}$


# total rates, COM, angular, <br> inv mass and pT distributions 

## Translation between EFT and Anomalous couplings

## $\mathcal{L}_{3 h}$ Couplings vs $S U(2)_{L} \times U(1)_{Y}(D \leq 6)$ Wilson Coefficients

$$
\begin{gathered}
g_{h h h}^{(1)}=1+\frac{5}{2} \bar{c}_{6}, \quad g_{h h h}^{(2)}=\frac{g}{m_{W}} \bar{c}_{H}, \quad, \quad g_{h g g}=g_{h g g}^{\mathrm{SM}}-\frac{4 g_{s}^{2} v \bar{c}_{g}}{m_{W}^{2}}, \quad g_{h \gamma \gamma}=g_{h \gamma \gamma}^{\mathrm{SM}}-\frac{8 g s_{W}^{2} \bar{c}_{\gamma}}{m_{W}} \\
g_{h w w}^{(1)}=\frac{2 g}{m_{W}} \bar{c}_{H W}, \quad, \quad, \quad g_{h z z}^{(2)}=g_{h w w}^{(1)}+\frac{2 g}{c_{W}^{2} m_{W}}\left[\bar{c}_{H B} s_{W}^{2}-4 \bar{c}_{\gamma} s_{W}^{4}\right], \frac{g}{2 m_{W}}\left[\bar{c}_{W}+\bar{c}_{H W}\right] \\
g_{h z z}^{(2)}=2 g_{h w w}^{(2)}+\frac{g s_{W}^{2}}{c_{W}^{2} m_{W}}\left[\left(\bar{c}_{B}+\bar{c}_{H B}\right)\right] \quad, \quad g_{h w w}^{(3)}=g m_{W} \quad, \quad g_{h z z}^{(3)}=\frac{g_{h w w}^{(3)}}{c_{W}^{2}}\left(1-2 \bar{c}_{T}\right) \\
g_{h a z}^{(1)}=\frac{g s_{W}}{c_{W} m_{W}}\left[\bar{c}_{H W}-\bar{c}_{H B}+8 \bar{c}_{\gamma} s_{W}^{2}\right] \quad, \quad g_{h a z}^{(2)}=\frac{g s_{W}}{c_{W} m_{W}}\left[\bar{c}_{H W}-\bar{c}_{H B}-\bar{c}_{B}+\bar{c}_{W}\right]
\end{gathered}
$$

$$
-\frac{1}{4} h g_{h V V}^{(1)} V_{\mu \nu} V^{\mu \nu}-h g_{h V V}^{(2)} V_{\nu} \partial_{\mu} V^{\mu \nu}-\frac{1}{4} h \tilde{g}_{h V V} V_{\mu \nu} \tilde{V}^{\mu \nu}
$$

Alloul, Fuks, VS. 1310.5150 Gorbahn, No, VS. In preparation

## Translation between EFT and Anomalous couplings

Within the EFT there are relations among anomalous couplings, e.g. TGCs and Higgs physics
$\mathcal{L}_{3 V}$ Couplings vs $S U(2)_{L} \times U(1)_{Y}(D \leq 6)$ Wilson Coefficients

$$
\begin{gathered}
g_{1}^{Z}=1-\frac{1}{c_{W}^{2}}\left[\bar{c}_{H W}-\left(2 s_{W}^{2}-3\right) \bar{c}_{W}\right] \quad, \quad \kappa_{Z}=1-\frac{1}{c_{W}^{2}}\left[c_{W}^{2} \bar{c}_{H W}-s_{W}^{2} \bar{c}_{H B}-\left(2 s_{W}^{2}-3\right) \bar{c}_{W}\right] \\
g_{1}^{\gamma}=1 \quad, \quad \kappa_{\gamma}=1-2 \bar{c}_{W}-\bar{c}_{H W}-\bar{c}_{H B} \quad, \quad \lambda_{\gamma}=\lambda_{Z}=3 g^{2} \bar{c}_{3 W}
\end{gathered}
$$

similarly for QGCs: also function of the same HDOs
Alloul, Fuks, VS. 1310.5150 Gorbahn, No, VS. In preparation

## The set-up

Production rates and kinematic distributions
depend on cuts need radiation and detector effects Simulation tools

## In this talk I use

1. Feynrules HDOs involving Higgs and TGCs

Alloul, Fuks, VS. 1310.5150
links to CalcHEP, LoopTools, Madgraph... HEFT->Madgraph-> Pythia... -> FastSim/FullSim

## In this talk I use

1. Feynrules HDOs involving Higgs and TGCs Alloul, Fuks, VS. 1310.5150
links to CalcHEP, LoopTools, Madgraph... HEFT->Madgraph-> Pythia... -> FastSim/FullSim
2.QCD NLO HDOs involving Higgs and TGCs

VS and Williams. In prep.

## MCFM and POWHEG

Pythia, Herwig... -> FastSim/FullSim
de Grande, Fuks, Mawatari, Mimasu, VS. In preparation for MC@NLO

# Looking for heavy New Physics current status 

Ellis, VS and You. 1404.3667,1410.7703

## What about Higgs physics?

Using kinematics for NP : a non-SM HDO and some boost


## What about Higgs physics?

Using kinematics for NP : a non-SM HDO and some boost


Kinematic distributions in TGC and VH are complementary

muhat+VH muhat+TGC
all

| Operator | Coefficient | LHC Constraints |  |
| :---: | :---: | :---: | :---: |
|  |  | Individual | Marginalized |
| $\mathcal{O}_{W}=\frac{i g}{2}\left(H^{\dagger} \sigma^{a} \stackrel{\leftrightarrow}{D^{\mu}} H\right) D^{\nu} W_{\mu \nu}^{a}$ | $\frac{m_{W}^{2}}{\Lambda^{2}}\left(c_{W}-c_{B}\right)$ | $(-0.022,0.004)$ | $(-0.035,0.005)$ |
| $\mathcal{O}_{B}=\frac{i g^{\prime}}{2}\left(H^{\dagger} \overleftrightarrow{D^{\mu}} H\right) \partial^{\nu} B_{\mu \nu}$ |  |  |  |
| $\mathcal{O}_{H W}=i g\left(D^{\mu} H\right)^{\dagger} \sigma^{a}\left(D^{\nu} H\right) W_{\mu \nu}^{a}$ | $\frac{m_{N}^{2}}{\Lambda^{2}} c_{H W}$ | $(-0.042,0.008)$ | $(-0.035,0.015)$ |
| $\mathcal{O}_{H B}=i g^{\prime}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}$ | $\frac{m_{W}^{2}}{\Lambda^{2}} c_{H B}$ | $(-0.053,0.044)$ | $(-0.045,0.075)$ |
| $\mathcal{O}_{3 W}=\frac{1}{3} g \epsilon_{a b c} W_{\mu}^{a \nu} W_{\nu \rho}^{b} W^{c \rho \mu}$ | $\frac{m_{W}^{2}}{\Lambda^{2}} c_{3 W}$ | $(-0.083,0.045)$ | $(-0.083,0.045)$ |
| $\mathcal{O}_{g}=g_{s}^{2}\|H\|^{2} G_{\mu \nu}^{A} G^{A \mu \nu}$ | $\frac{m_{V}^{2}}{\Lambda^{2}} c_{g}$ | $(0,3.0) \times 10^{-5}$ | $(-3.2,1.1) \times 10^{-4}$ |
| $\mathcal{O}_{\gamma}=g^{2}\|H\|^{2} B_{\mu \nu} B^{\mu \nu}$ | $\frac{m_{W}^{2}}{\Lambda^{2}} c_{\gamma}$ | $(-4.0,2.3) \times 10^{-4}$ | $(-11,2.2) \times 10^{-4}$ |
| $\mathcal{O}_{H}=\frac{1}{2}\left(\partial^{\mu}\|H\|^{2}\right)^{2}$ | $\frac{v^{2}}{\Lambda^{2}} c_{H}$ | $(-,-)$ | $(-,-)$ |
| $\mathcal{O}_{f}=y_{f}\|H\|^{2} \bar{F}_{L} H^{(c)} f_{R}+$ h.c. | $\frac{v^{2}}{\Lambda^{2}} c_{f}$ | $(-,-)$ | $(-,-)$ |

## LO vs NLO, briefly



## MCFM in development

VBF, briefly

## Kinematics of VBF also modified yet more difficult discrimination

## LHC13



LHC13


## EFT->Models

Masso and VS. 1211.1320
Gorbahn, No and VS. In preparation

## EFT (linear realization) vs UV-completions

UV models

Example 1. tree-level operators<br>radion/dilaton exchange

Example 2.
loop-induced operators
2HDM and SUSY spartners

## Example 1. Tree-level exchange radion/dilaton



## Example 1. Tree-level exchange



## Example 2. Loop-induced



2HDMs


## validity is now

$$
\hat{s} \lesssim 4 M_{\Phi}^{2}
$$

## Example 2. Loop-induced



$$
2 \mathrm{HDMs}
$$

Gorbahn, No and VS. In preparation


Masso and VS. 1211.1320

## General predictions:

$$
\begin{aligned}
& \bar{c}_{W}-\bar{c}_{B}=-\left(\bar{c}_{H W}-\bar{c}_{H B}\right)=4 \bar{c}_{\gamma} \\
& \bar{c}_{H W}=-\bar{c}_{W}
\end{aligned}
$$

$$
\begin{gathered}
\bar{c}_{\gamma}=\frac{m_{W}^{2} \tilde{\lambda}_{3}}{256 \pi^{2} \tilde{\mu}_{2}^{2}} \\
\bar{c}_{H W}=-\bar{c}_{W}=\frac{m_{W}^{2}\left(2 \tilde{\lambda}_{3}+\tilde{\lambda}_{4}\right)}{96 \pi^{2} \tilde{\mu}_{2}^{2}}=\frac{16 \bar{c}_{\gamma}}{3}+\frac{m_{W}^{2} \tilde{\lambda}_{4}}{96 \pi^{2} \tilde{\mu}_{2}^{2}} \\
\bar{c}_{H B}=-\bar{c}_{B}=\frac{m_{W}^{2}\left(-2 \tilde{\lambda}_{3}+\tilde{\lambda}_{4}\right)}{192 \pi^{2} \tilde{\mu}_{2}^{2}}=-\frac{8 \bar{c}_{\gamma}}{3}+\frac{m_{W}^{2} \tilde{\lambda}_{4}}{192 \pi^{2} \tilde{\mu}_{2}^{2}} \\
\bar{c}_{3 W}=\frac{m_{W}^{2}}{1440 \pi^{2} \tilde{\mu}_{2}^{2}}
\end{gathered}
$$

## LHC8 constraints:

one order of magnitude better than a global fit


## Limitations of EFTs

## LHC8 ATLAS VH


most sensitive bin:
overflow (last) bin
sensitive to dynamics of new physics breakdown of EFT
To what extent can we use this bin?
how far does it extend?
see also
Biechoetter et al 1406.7320 Englert+Spannowsky. 1408.5147 Dawson, Lewis, Zeng 1409.6299

distribution

$$
\begin{gathered}
\sqrt{c}=g_{N P} \frac{m_{W}}{\Lambda_{N P}} \\
\Lambda_{N P} \simeq g_{N P}(0.5 \mathrm{TeV})
\end{gathered}
$$

## Conclusions

Absence of hints in direct searches
EFT approach to Higgs physics
Higgs anomalous couplings:
rates but also kinematic distributions
Complete global fit at the level of dimension-six operators enhanced using differential information

SM precision crucial: excess as genuine new physics
Exploring the validity of EFT propose benchmarks

Benchmarks correlations among coefficients, input for fit

## Kinematics of associated production

pTV is more sensitive than mVH to QCD NLO but effect not yet at the level of operator values we can bound


VS and Williams. In prep.

## Boring and necessary details

## Bottom-up approach:

operators w / SM particles and symmetries, plus the newcomer, the Higgs

## Boring and necessary details

Bottom-up approach: operators w / SM particles and symmetries, plus the newcomer, the Higgs

## Realization of EWSB

Linear or non-linear

## Boring and necessary details

Bottom-up approach: operators w / SM particles and symmetries, plus the newcomer, the Higgs

## Realization of EWSB

Linear or non-linear

## And the Higgs could be

Weak doublet or singlet

Once this choice is made, expand...
$\frac{1}{\Lambda^{2}}$
Integrating out new physics
$\frac{v^{2}}{f^{2}}$
Non-linearity $\quad U=e^{i \Pi(h) / f}$
...order-by-order

## For example, some operators Higgs-massive vector bosons

ex.

$$
\mathcal{L}_{e f f}=\sum_{i} \frac{f_{i}}{\Lambda^{2}} \mathcal{O}_{i}
$$

$$
\begin{array}{r}
\mathcal{O}_{W}=\left(D_{\mu} \Phi\right)^{\dagger} \widehat{W}^{\mu \nu}\left(D_{\nu} \Phi\right) \\
\mathcal{O}_{B}=\left(D_{\mu} \Phi\right)^{\dagger}\left(D_{\nu} \Phi\right) \widehat{B}^{\mu \nu} \\
\mathcal{O}_{W W}=\Phi^{\dagger} \widehat{W}^{\mu \nu} \widehat{W}_{\mu \nu} \Phi \\
\mathcal{O}_{B B}=\left(\Phi^{\dagger} \Phi\right) \widehat{B}^{\mu \nu} \widehat{B}_{\mu \nu}
\end{array}
$$

For example, some operators Higgs-massive vector bosons
ex.

$$
\mathcal{O}_{W}=\left(D_{\mu} \Phi\right)^{\dagger} \widehat{W}^{\mu \nu}\left(D_{\nu} \Phi\right)
$$

$$
\begin{array}{rr}
\mathcal{L}_{e f f}=\sum_{i} \frac{f_{i}}{\Lambda^{2}} \mathcal{O}_{i} & \mathcal{O}_{B}=\left(D_{\mu} \Phi\right)^{\dagger}\left(D_{\nu} \Phi\right) \widehat{B}^{\mu \nu} \\
\mathcal{O}_{W W}=\Phi^{\dagger} \widehat{W}^{\mu \nu} \widehat{W}_{\mu \nu} \Phi \\
\mathcal{O}_{B B}=\left(\Phi^{\dagger} \Phi\right) \widehat{B}^{\mu \nu} \widehat{B}_{\mu \nu}
\end{array}
$$

UV theory: tree-level or loop may need a model bias
ex. SILH $\frac{2 i g c_{H W}}{m_{W}^{2}}\left(D^{\mu} \Phi^{\dagger}\right) \hat{W}_{\mu \nu}\left(D^{\nu} \Phi\right)$
Giudice, Grojean, Pomarol, Rattazzi. 0703164
redundancies trade off operators using EOM

## (D) Choice of basis

And, finally

Observables as a function of HDOs coefficients

## In summary

## In terms of Higgs' anomalous couplings

$$
\begin{aligned}
\mathcal{L} \supset & -\frac{1}{4} g_{H Z Z}^{(1)} Z_{\mu \nu} Z^{\mu \nu} h-g_{H Z Z}^{(2)} Z_{\nu} \partial_{\mu} Z^{\mu \nu} h \\
& -\frac{1}{2} g_{H W W}^{(1)} W^{\mu \nu} W_{\mu \nu}^{\dagger} h-\left[g_{H W W}^{(2)} W^{\nu} \partial^{\mu} W_{\mu \nu}^{\dagger} h+\text { h.c. }\right],
\end{aligned}
$$


black global fit green one-by-one fit
$\qquad$
$\qquad$

## Global fit to signal strengths and kinematic distributions

## Conclusions of the analysis

1. Breaking of blind directions requires information on associated production (AP)
2. Kinematic distributions in AP is as sensitive (or more) than total rates

## Global fit to signal strengths and kinematic distributions

## Conclusions of the analysis

1. Breaking of blind directions requires information on associated production (AP)
2. Kinematic distributions in AP is as sensitive (or more) than total rates
