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Motivation

credit: Planck

credit: VIPERS

The CMB and large scale structure show that the Universe is nearly
homogeneous and isotropic on large scales.
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Motivation

The metric which describes a perfectly homogeneous and isotropic Universe
is the Friedmann-Lemaitre-Robertson-Walker metric

gµνdx
µdxν = −dt2 + a2(t)

(
dr2

1− kr2
+ dΩ2

)
Inserting the FLRW metric into the Einstein equations

Rµν −
1

2
gµνR+ gµνΛ =

8πG

3Tµν

one obtains the Friedmann equations:(
ȧ

a

)2

+
k

a2
− Λ

3
=

8πG

3
ρ

3
ä

a
+ 4πGρ− Λ = 0
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Motivation

credit: Planck

�� ��evolve in time −→
�
�

�
�average over inhomogeneities

6=�
�

�
�average over inhomogeneities →

�� ��evolve in time

credit: ESA

3
äD
aD

+ 4πG 〈ρ〉D − Λ = QD

Interesting! It could explain the present apparent acceleration of the Universe
without finely tuned Λ, extra scalar fields or modifications of gravity

Difficult: defining univocally an averaging procedure, finding a metric for the
coarse-grained spacetime

Up to now it seems that the effect cannot account for observed Λ, but very
interesting anyway for precision cosmology
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This talk: testing the FLRW metric

Consistency test for FLRW
of C. Clarkson, B. Bassett and T. Hui-Ching Lu (2008)

Comoving distance in a general FLRW model with curvature:

D(z) =
c

H0

√
−ΩK

sin

(√
−ΩK

∫ z

0

dz′
H0

H(z′)

)
ΩK = curvature parameter today.

Invert the previous equation⇒ expression for ΩK independent of the specific
cosmology:

ΩK(z) =
[H(z)D,z(z)]

2 − 1

[H0D(z)]2
=

{
const for FLRW
ΩK(z) otherwise

By measuring independently H(z), D(z) and H0 one can test whether ΩK
deviates from a constant.
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Data sets
19 H(z) data from passively evolving galaxies, Moresco et al. (2012)

select most massive red elliptical galaxies, with no signature of star
formation→ tgal ∼ tUniverse
compute their ages tgal ⇒ dtgal/dz

compute H(z) ' − 1
1+z

dz
dt

580 SNIa data of Union 2.1 compilation, Suzuki et al. (2012)
compute SNIa distance modulus

µ(z) = m(z)−M = 5 log10(dL(z)) + 25

where dL = (1 + z)D(z)t

H0 from HST and Wide Field Camera 3, Riess et al. (2011):

H0 = 73.8± 2.4 km s−1 Mpc−1

Elisabetta Majerotto (UAM) Invisibles ’15 Workshop Madrid, 23rd of June 2015 6 / 15



Data sets
19 H(z) data from passively evolving galaxies, Moresco et al. (2012)

select most massive red elliptical galaxies, with no signature of star
formation→ tgal ∼ tUniverse
compute their ages tgal ⇒ dtgal/dz

compute H(z) ' − 1
1+z

dz
dt

580 SNIa data of Union 2.1 compilation, Suzuki et al. (2012)
compute SNIa distance modulus

µ(z) = m(z)−M = 5 log10(dL(z)) + 25

where dL = (1 + z)D(z)t

H0 from HST and Wide Field Camera 3, Riess et al. (2011):

H0 = 73.8± 2.4 km s−1 Mpc−1

Elisabetta Majerotto (UAM) Invisibles ’15 Workshop Madrid, 23rd of June 2015 6 / 15



Data sets
19 H(z) data from passively evolving galaxies, Moresco et al. (2012)

select most massive red elliptical galaxies, with no signature of star
formation→ tgal ∼ tUniverse
compute their ages tgal ⇒ dtgal/dz

compute H(z) ' − 1
1+z

dz
dt

580 SNIa data of Union 2.1 compilation, Suzuki et al. (2012)
compute SNIa distance modulus

µ(z) = m(z)−M = 5 log10(dL(z)) + 25

where dL = (1 + z)D(z)t

H0 from HST and Wide Field Camera 3, Riess et al. (2011):

H0 = 73.8± 2.4 km s−1 Mpc−1

Elisabetta Majerotto (UAM) Invisibles ’15 Workshop Madrid, 23rd of June 2015 6 / 15



Computing ΩK(z)

Collect measured H0, and dL(zi), H(zj) for different sets of {zi}, {zj}

{
Discrete approach: binning → ΩK(zk)
Continuous approach: reconstructing → ΩK(z), z ∈ {zmin, zmax}

We tried 4 different techniques: 2 discrete and 2 continuous ones

discrete:
{

simple binning
binning + principal component decomposition

continuous:
{

genetic algorithms
Padé approximation
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Best model-independent reconstruction:
Genetic Algorithms
Based on principles of evolution through natural selection:

(a) crossover = combination of different individuals
(b) mutation = a random change in an individual

Probability of reproductive success ∝ fitness of individual

In our case:
fitness of individual→ χ2 function
initial population→ set of functions, the grammar, and set of operators
in each generation, crossover and mutation are applied
process repeated several thousand times until e.g. max number of
generations or desired convergence reached.
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Genetic Algorithms

0.2 0.4 0.6 0.8 1.0 1.2 1.4
-2

-1

0

1

2

z

W
K
Hz
L

Error regions made with the path
integral formalism of Nesseris &
Garcia-Bellido (2012)

constraints are
model-independent
at small z errors are large
GA give the smallest errors
with respect to other
techniques: σΩK

∼ 0.1 due
to smooth and analytical
expression at all z
reconstruction consistent
with ΩK = 0
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Error regions computation in GA
Analytical method devised in Nesseris & Garcia-Bellido (2012) based on
path integral formalism.
To calculate the 1σ error δfi around the best-fit fbf (x) at a point xi:

CI(xi, δfi) ≡
∫ fbf (xi)+δfi

fbf (xi)−δfi
dfi

1

(2π)
1/2

σi
exp

(
−1

2

(
yi − fi
σi

)2
)

= erf
(

1/
√

2
)

This gives a discrete set of {xi, δfi}.
We want a smooth function, so we assume a shape for df :

df(x) = a+ bx+ cx2

and minimise simultaneously

χ2
CI(δfi) =

N∑
i=1

(
CI(xi, δfi)− erf

(
1/
√

2
))2

and

χ2(fbf + dfi) ≡
N∑
i=1

(
yi − (fbf + δfi)

σi

)2

.

Elisabetta Majerotto (UAM) Invisibles ’15 Workshop Madrid, 23rd of June 2015 10 / 15



Error regions computation in GA
Analytical method devised in Nesseris & Garcia-Bellido (2012) based on
path integral formalism.
To calculate the 1σ error δfi around the best-fit fbf (x) at a point xi:

CI(xi, δfi) ≡
∫ fbf (xi)+δfi

fbf (xi)−δfi
dfi

1

(2π)
1/2

σi
exp

(
−1

2

(
yi − fi
σi

)2
)

= erf
(

1/
√

2
)

This gives a discrete set of {xi, δfi}.
We want a smooth function, so we assume a shape for df :

df(x) = a+ bx+ cx2

and minimise simultaneously

χ2
CI(δfi) =

N∑
i=1

(
CI(xi, δfi)− erf

(
1/
√

2
))2

and

χ2(fbf + dfi) ≡
N∑
i=1

(
yi − (fbf + δfi)

σi

)2

.

Elisabetta Majerotto (UAM) Invisibles ’15 Workshop Madrid, 23rd of June 2015 10 / 15



Error regions computation in GA
Analytical method devised in Nesseris & Garcia-Bellido (2012) based on
path integral formalism.
To calculate the 1σ error δfi around the best-fit fbf (x) at a point xi:

CI(xi, δfi) ≡
∫ fbf (xi)+δfi

fbf (xi)−δfi
dfi

1

(2π)
1/2

σi
exp

(
−1

2

(
yi − fi
σi

)2
)

= erf
(

1/
√

2
)

This gives a discrete set of {xi, δfi}.
We want a smooth function, so we assume a shape for df :

df(x) = a+ bx+ cx2

and minimise simultaneously

χ2
CI(δfi) =

N∑
i=1

(
CI(xi, δfi)− erf

(
1/
√

2
))2

and

χ2(fbf + dfi) ≡
N∑
i=1

(
yi − (fbf + δfi)

σi

)2

.

Elisabetta Majerotto (UAM) Invisibles ’15 Workshop Madrid, 23rd of June 2015 10 / 15



Other model-independent methods
Simple binning
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Forecasts for future experiments

Euclid
Medium-size mission of the ESA Cosmic Vision programme, launch planned for 2020.
The spectroscopic survey will measure ∼ 50 million galaxies with slitless spectroscopy,
over 15, 000 square deg.

Observed power spectrum:

Pobs(z, kr) =
D2

Ar(z)H(z)

D2
A(z)Hr(z)

G2(z)b(z)2
(
1 + βµ2)2 P0r(k) + Pshot(z)

0.65 < z < 2.05, ∆z = 0.1

scale-independent bias approximation, OK for large scales, as in Orsi et al.
(2011)

number densities as in EM, L. Guzzo et al (2012), from a sophisticated simulation

WMAP-7 ΛCDM fiducial model
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Forecasts for future experiments

Euclid spectroscopy alone

0.5 1.0 1.5 2.0

-0.4

-0.2

0.0

0.2

0.4

z

W
k

errors are smallest when
1.1 < z < 1.5

at lower and higher z constraints
become worse by up to a factor of
2.5

Euclid spectroscopy & 1000 SNIa

0.5 1.0 1.5 2.0
-1.0

-0.5

0.0

0.5

1.0

z

W
k

Euclid + SNIa HoptL

LTB, Tardis model, timescape.

errors improve by a factor of ∼ 2

best constrained area: z > 1.5

LTB cannot be distinguished,
Tardis model and timescape may
(but need to include error on
H(z), SNIa systematics etc...)
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Why is ΩK badly constrained at small z?

Model-independent proof

Expand ΩK(z) for small z:

Ω̃K = Ωk +
1− H2

1,0

H2
0

z2
+

2H0H
′(0)−H1,0H

′
1(0)

H2
0

− H′
1(0)
H1,0

z
+ ...

′ = d/dz
H0 and H1,0 are the values of the two Hubble parameters at z = 0.

⇒
�� ��divergence as z2 unless H1,0 = H0

Elisabetta Majerotto (UAM) Invisibles ’15 Workshop Madrid, 23rd of June 2015 14 / 15



Why is ΩK badly constrained at small z?

Model-independent proof

Expand ΩK(z) for small z:

Ω̃K = Ωk +
1− H2

1,0

H2
0

z2
+

2H0H
′(0)−H1,0H

′
1(0)

H2
0

− H′
1(0)
H1,0

z
+ ...

′ = d/dz
H0 and H1,0 are the values of the two Hubble parameters at z = 0.

⇒
�� ��divergence as z2 unless H1,0 = H0

Elisabetta Majerotto (UAM) Invisibles ’15 Workshop Madrid, 23rd of June 2015 14 / 15



Summary

we use 4 model-independent methods to reconstruct ΩK(z)

all methods are in agreement with ΩK(z) = const = 0

intrinsic of the test that errors are very large at small z; transition to better
constraints at 0.2 < z < 0.4

best σΩK
' 0.1 obtained with GA

direct binning and PCA give at most σΩK
∼ 3

Padé and GA give σ ∼ 0.5 for z ≤ 1

Future data from Euclid improve considerably the errors: Euclid only by a
factor ∼ 10, Euclid + SNIa factor up to 40
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