SUSY@LHC

Ulrich Ellwanger LPT Orsay, Univ. Paris-Sud XI and University of Southampton

June 20, 2015

Ulrich Ellwanger

Shortcomings of the SM

- What is Dark Matter?
- Hierarchy Problem^(*)
- Grand Unification (Quarks, leptons fill complete SU(5) representations, but gauge couplings do not quite unify)
- Matter-Antimatter Asymmetry
- Origin of the tiny Neutrino Masses
- Hierarchy/Mixing of Quark/Lepton Masses

- means "can be implemented", but not automatically

(*) See comment on the next page

Solved by SUSY?

Comment on the Hierarchy Problem:

It has been proposed that, for some unknown reason, Quantum Field Theory ignores quadratic (power-like) divergencies like those contributing to scalar (Higgs) masses.

However, summing logarithmic divergencies leads often to "odd" powers, so-called anomalous dimensions of operators/corresponding couplings.

How could Quantum Field Theory distinguish between integer/odd powers of a cutoff??? Not consistent for me...

At present: No hints for SUSY nor for alternative solutions of the Hierarchy Problem

SUSY@LHC: SUSY extensions of the Standard Model are not unique! What to expect from "Naturalness"?

All SUSY extensions of the SM include at least two Higgs doublets H_u , H_d , which have fermionic partners ("higgsinos") some of which are charged

Need a supersymmetric mass term $|\mu| > 100$ GeV for the higgsinos (LEP)

 \rightarrow Positive mass terms μ^2 in the potential for H_u , H_d due to SUSY

But the Higgs potential must be unstable at the origin in order to generate VEVs for H_u , H_d with $v_u^2 + v_d^2 \simeq (174 \text{ GeV})^2$

→ Have to compensate the positive mass terms μ^2 by negative SUSY-breaking mass terms $m_{H_u}^2$, $m_{H_d}^2$ in the Higgs potential: $\mu^2 + m_{H_u}^2$ should give $\approx -M_Z^2/2$ (without "finetuning")

 \rightarrow Expect $|\mu|$ not too far above M_Z , hence not too heavy higgsinos

In the MSSM the reason for $\mu^2 pprox |m^2_{H_u}|, \; |m^2_{H_d}|$ remains unexplained

In the MSSM the quartic H_u , H_d self couplings are proportional to the electroweak gauge couplings $g_1^2 + g_2^2$ $\rightarrow M_h < M_7$ at tree level (*h* is the SM-like Higgs boson)

Heavy or largely split "stops" (scalar partners of the top quark) lead to large radiative corrections to the quartic H_u self couplings; $m_{\rm stop_2} \gtrsim 1$ TeV is necessary in order to explain $M_h \sim 125$ GeV (in the MSSM)

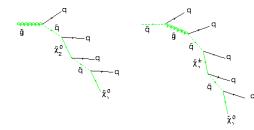
But radiative corrections due to a heavy stop₂ lead to $m_{H_u}^2 \approx -m_{\text{stop}_2}^2$! Explains why $m_{H_u}^2 < 0$, but $|m_{H_u}^2|$ comes out too large for $m_{\text{stop}_2} \gtrsim 1$ TeV

 \rightarrow Again: a "little finetuning" is necessary in order to obtain $\mu^2+m_{H_u}^2\approx -M_Z^2/2$

In the NMSSM μ is given by the VEV of a singlet S, $\mu_{\mathrm{eff}}=\lambda\left< S \right>$

 λ is a Yukawa coupling of S to higgsinos; $\langle S \rangle \approx |m_S|$ if the soft SUSY breaking mass $m_S^2 < 0$

$$ightarrow$$
 explains $\mu_{ ext{eff}}^2pprox -m_{\mathcal{S}}^2pprox |m_{H_u}^2|, \; |m_{H_d}^2|$

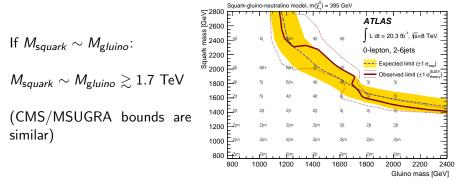

- \rightarrow Additional contributions to the quartic H_u , H_d self couplings $\sim \lambda^2$
- → Additional contributions to the SM-like Higgs mass, (also through possible mixing with a lighter mostly S-state) less contributions from rad. corrs. required
- \rightarrow Not so heavy stops (less "finetuning") are required
- \rightarrow Expect not too heavy stops

Search Strategies for SUSY@LHC:

Assume R-parity (symmetry under sparticle \rightarrow -sparticle)

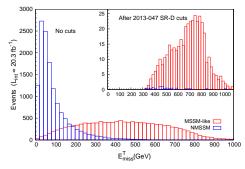
- ightarrow Each vertex contains an even number of sparticles
- \rightarrow A sparticle decays always into a sparticle + SM particle(s).
- \rightarrow The lightest sparticle is stable!
- \rightarrow A good dark matter candidate if neutral, a "neutralino" $\tilde{\chi}_1^0$ (mixture of bino/wino/higgsino in the MSSM, mixture of bino/wino/higgsino/singlino in the NMSSM)

Once sparticles are produced (in pairs), they decay into other sparticles, but the lightest neutralino escapes undetected and gives rise to E_{miss}^{T} :


Search Strategies for SUSY@LHC:

- \rightarrow Searches for SUSY employ cuts on $E_{\rm miss}^{\mathcal{T}} >$ a few hundred GeV plus
 - hard jets
 - leptons
 - *b*-quarks (from stops/sbottoms)
 - τ 's, photons,
 - combinations thereof

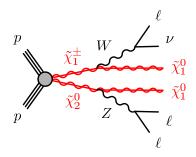
Due to the various possible sparticle cascade decays, the absence (or presence) of excess events is not easy to interpret \rightarrow use, for the interpretation, "simplified models" \equiv the assumption of simple one-step sparticle cascade decays, or specific mechanisms for SUSY breaking like MSUGRA


The largest cross sections at the LHC are the ones for up-/down-squarks and gluinos:

- \rightarrow Strong interactions, and the "superpartners" are present in protons
- \rightarrow The exchange of a gluino in the t-channel can transform quarks and gluons into squarks and gluinos
- → The absence of excess events leads to the strongest bounds, e.g. from ATLAS (1405.7875), assuming simplified squark/gluino decays into jets + E_{miss}^{T} and $m(\tilde{\chi}_{1}^{0}) = 395$ GeV:

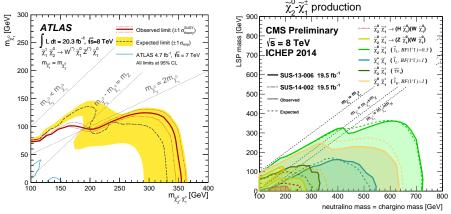
In the MSSM, $\tilde{\chi}_1^0$ is typically a "bino" In the NMSSM, $\tilde{\chi}_1^0$ can be a very light "singlino"

During an additional decay bino \rightarrow singlino + Higgs with $M_{\rm Higgs} \lesssim M_{\rm bino}$, the bino can transfer practically all of its energy to the Higgs \rightarrow Nearly no energy, and hence no $E_{\rm miss}^{T}$ is left for the singlino! Simulation of squark/gluino production in 1406.7221, with A.M. Teixeira: Red: MSSM with $\tilde{\chi}_{1}^{0}$ = bino; blue: NMSSM with an additional singlino


ightarrow Squark \sim gluino masses just below 1 TeV are not excluded!

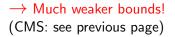
Ulrich Ellwanger

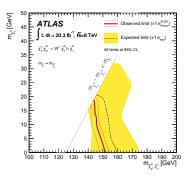
SUSY@LHC


Recall: Expect light higgsinos of a few 100 GeV (charged $\tilde{\chi}_1^{\pm}$, neutral $\tilde{\chi}_2^0$) from "naturalness"

Can be pair produced via $p + p \rightarrow W^{\pm *} \rightarrow \tilde{\chi}_1^{\pm} + \tilde{\chi}_2^0$, and decay into $\tilde{\chi}_1^0$ via W^{\pm} and Z:

If W^{\pm} and Z decay leptonically: trileptons + E_{miss}^{T}


Interpreting the absence of excesses in terms of wino-like $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^0$ (which have larger couplings to W^{\pm} than higgsinos):



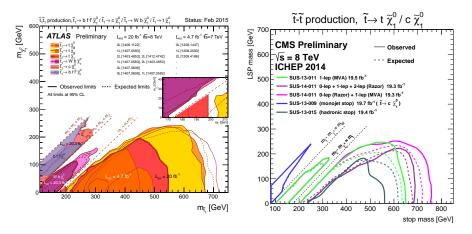
(Green limits for CMS: assume decays via light sleptons)

But: In the NMSSM, $\tilde{\chi}_2^0 \rightarrow \text{singlino} (\tilde{\chi}_1^0) + \text{Higgs}$ can alleviate the bounds

Re-interpreting the absence of trilepton-excesses:

W

p

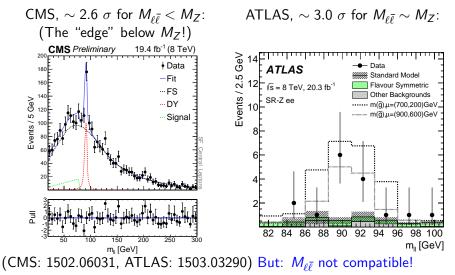

Recall: Expect light stops of a few 100 GeV from naturalness

But: Stops \tilde{t} may decay in many different ways, depending on $m_{\tilde{t}}$:

•
$$\tilde{t} \rightarrow t + \tilde{\chi}_1^0$$

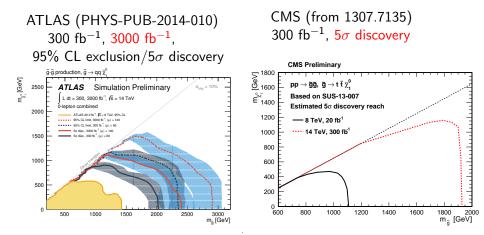
• $\tilde{t} \rightarrow b + W + \tilde{\chi}_1^0$
• $\tilde{t} \rightarrow b + q + \bar{q'} + \tilde{\chi}_1^0$
• $\tilde{t} \rightarrow b + \ell + \bar{\ell'} + \tilde{\chi}_1^0$
• $\tilde{t} \rightarrow c + \tilde{\chi}_1^0$

$$\begin{array}{l} \text{if } m_{\tilde{t}} > m_{\text{top}} + m(\tilde{\chi}_1^0) \\ \text{if } m_{\tilde{t}} > m_W + m_b + m(\tilde{\chi}_1^0) \\ \text{if } m_{\tilde{t}} < m_W + m_b + m(\tilde{\chi}_1^0) \\ \text{if } m_{\tilde{t}} < m_W + m_b + m(\tilde{\chi}_1^0) \\ \text{if } m_{\tilde{t}} < m_c + m(\tilde{\chi}_1^0) \end{array}$$

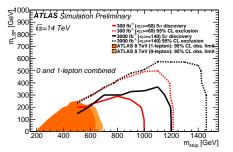

 \rightarrow Limits depend on the (lighter) stop \tilde{t}_1 decay mode:

In all cases: No limits for $m_{\tilde{t}_1} \sim m_{top} + m(\tilde{\chi}_1^0)$, where $E_{miss}^T \to 0$

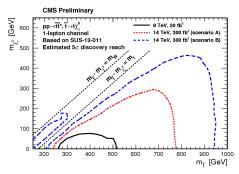
Are there excesses which may give a hint for SUSY?


In searches for trileptons (= $\ell \bar{\ell} + \ell'$) + E_{miss}^T + jets, possible from gluino/sbottom decay cascades with $\ell \bar{\ell}$ from Z^* or Z:

Ulrich Ellwanger

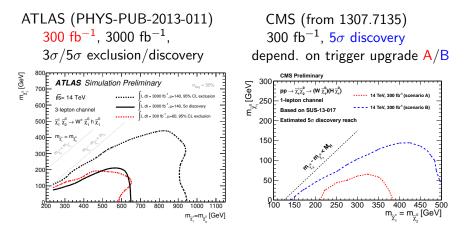

Prospects for future SUSY searches

Gluinos:



Stops:

ATLAS (PHYS-PUB-2013-011) <u>300 fb⁻¹</u>, 3000 fb⁻¹, 95% CL exclusion/5σ discovery



CMS (from 1307.7135) 300 fb⁻¹, 5σ discovery depend. on trigger upgrade A/B

$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0$ (bino/singlino) + Higgs

(here: wino-like $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$; higgsino cross sects. are smaller):

STATUS OF SUSY AFTER THE LHC RUN I:

Limits depend on

- The SUSY extension of the Standard Model (MSSM, NMSSM, ...)
- The mechanism for SUSY breaking \leftrightarrow sparticle masses, decay cascades

Simple scenarios for SUSY breaking (MSUGRA, GMSB) are under pressure from lower bounds on up-/down-squark, gluino masses: "Little finetuning" of $\mathcal{O}(0.1\%)$ (MSSM), $\mathcal{O}(1\%)$ (NMSSM) (Still small compared to the Standard-Model hierarchy problem ...)

Scenarios with light higgsinos, light stops which minimize finetuning ("natural SUSY") will only be tested at the run II (or after 3000 fb⁻¹ integrated luminosity)

Recall the "Goodies" of SUSY from page 1: \rightarrow Hard to give up, unless hints for alternatives appear!