Carla Biggio

Universita` di Genova

Minimal muon anomalous magnetic moment

Based on JHEP 02 (2015) 099
in collaboration with M. Bordone

INVISIBLES15 Workshop
Madrid, 22-26 June 2015

The $(\mathrm{g}-2)_{\mu}$ anomaly

$a_{\mu}^{e x p}=116592080(63) \cdot 10^{-11}$
 Brookhaven 2006

$$
a_{\mu}^{S M}=116591790(65) \cdot 10^{-11}
$$

Jegerlehner, Nyffeler 2009 (e+e- annih.)

$$
\Delta a_{\mu}=290(90) \cdot 10^{-11} \quad 3.1 \sigma
$$

The $(\mathrm{g}-2)_{\mu}$ anomaly

$$
a_{\mu}^{e x p}=116592080(63) \cdot 10^{-11}
$$

$a_{\mu}^{S M}=116591790(65) \cdot 10^{-11}$
Jegerlehner, Nyffeler 2009 (ete- annih.)
$\Delta a_{\mu}=290(90) \cdot 10^{-11} \quad 3.1 \sigma$

3 ways out:

- theoretical: bad estimation of hadronic contribution \rightarrow disfavoured Passera et al. 2008-09
- experimental: \rightarrow wait for new experiment $\begin{gathered}\text { Fermilab } \\ \text { J-PARC }\end{gathered}$
- new physics !!!

The $(\mathrm{g}-2)_{\mu}$ anomaly

$$
a_{\mu}^{\text {exp }}=116592080(63) \cdot 10^{-11}
$$

$a_{\mu}^{S M}=116591790(65) \cdot 10^{-11}$

Jegerlehner, Nyffeler 2009 (e+e- annih.)
$\Delta a_{\mu}=290(90) \cdot 10^{-11} \quad 3.1 \sigma$

3 ways out:

- theoretical: bad estimation of hadronic contribution \rightarrow disfavoured Passera et al. 2008-09
- experimental: \rightarrow wait for new experiment $\begin{gathered}\text { Fermilab } \\ \text { J-PARC }\end{gathered}$
- new physics !!!

Explaining Δa_{μ} with a single new particle
Assumptions: 1. add only 1 particle to the SM
2. consider only fermions and scalars

Explaining Δa_{μ} with a single new particle

Assumptions: 1. add only 1 particle to the SM
2. consider only fermions and scalars

In the SM (g-2) is a $D=6$ operator

$$
\frac{1}{\Lambda^{2}} \bar{L} \sigma^{\mu \nu} e_{R} \phi F_{\mu \nu}+\text { h.c. }
$$

At 1 loop, for example:

Explaining Δa_{μ} with a single new particle

Assumptions: 1. add only 1 particle to the SM
2. consider only fermions and scalars

In the $S M(\mathrm{~g}-2)$ is a $\mathrm{D}=6$ operator

$$
\frac{1}{\Lambda^{2}} \bar{L} \sigma^{\mu \nu} e_{R} \phi F_{\mu \nu}+\text { h.c. }
$$

At 1 loop, for example:

Requirements: 1. Lorentz invariance
2. Gauge invariance
3. Renormalizability

New fermions

All vector-like: masses indep. of EWSB, no anomalies

$$
\begin{array}{ccc}
N_{R} & (1,1,0) & \text { typeI seesaw } \\
\Sigma_{R} & (1,3,1) & \text { typeIII seesaw } \\
E_{4} & (1,1,-1) \\
L_{4} & (1,2,-1 / 2) \\
T & (1,3,-1) \\
D & 4^{\text {th }} \text { generation. } \\
D & (1,2,-3 / 2)
\end{array}
$$

New fermions

All vector-like: masses indep. of EWSB, no anomalies

$$
\begin{array}{ccc}
N_{R} & (1,1,0) & \text { typeI seesaw } \\
\Sigma_{R} & (1,3,1) & \text { typeIII seesaw } \\
E_{4} & (1,1,-1) \\
L_{4} & (1,2,-1 / 2) \\
T & (1,3,-1) \\
D & (1,2,-3 / 2)
\end{array}
$$

New fermions

All vector-like: masses indep. of EWSB, no anomalies
$\left.\begin{array}{lcll}N_{R} & (1,1,0) & \text { typeI seesaw } & \\ \Sigma_{R} & (1,3,1) & \text { typeIII seesaw } & \\ E_{4} & (1,1,-1) \\ L_{4}{ }^{*} & (1,2,-1 / 2)\end{array}\right\} 4^{\text {th }}$, Freitas et al. 14

* Only L_{4} gives a positive contribution but too small (EWPT)

New fermions

All vector-like: masses indep. of EWSB, no anomalies

N_{R}	$(1,1,0)$	typeI seesaw
Σ_{R}	$(1,3,1)$	typeIII seesaw

* Only L_{4} gives a positive contribution but too small (EWPT)

The contribution of $D \sim(1,2,-3 / 2)$

$$
\begin{aligned}
a_{\mu}^{\mathrm{SM}+D}=\frac{m_{\mu}^{2} G_{F}}{24 \sqrt{2} \pi^{2}}\{ & \frac{\mathrm{SM}}{\left(3-4 \cos ^{2} \theta_{W}\right)^{2}+5+\frac{v^{2}\left|\lambda_{D \mu}\right|^{2}}{M_{D}^{2}}\left[-\frac{11}{4}-4 \cos ^{2} \theta_{W}+\right.} \\
& \left.\left.+F_{\mathrm{NC}}\left(\frac{M_{D}^{2}}{M_{Z}^{2}}\right)+F_{\mathrm{h}}\left(\frac{M_{D}^{2}}{M_{H}^{2}}\right)+F_{\mathrm{CC}}\left(\frac{M_{D}^{2}}{M_{W}^{2}}\right)\right]\right\}
\end{aligned}
$$

The contribution of $D \sim(1,2,-3 / 2)$

$$
D=\left(\begin{array}{l}
x \\
x
\end{array} f^{2 a n}\right.
$$

$$
\begin{aligned}
& a_{\mu}^{\mathrm{SM}+D}=\frac{m_{\mu}^{2} G_{F}}{24 \sqrt{2} \pi^{2}}\left\{\begin{array}{l}
\mathrm{SM} \\
\left(3-4 \cos ^{2} \theta_{W}\right)^{2}+5 \\
\frac{v^{2}\left|\lambda_{D \mu}\right|^{2}}{M_{D}^{2}}\left[-\frac{11}{4}-4 \cos ^{2} \theta_{W}+\right.
\end{array}\right. \\
& \left.\left.+F_{\mathrm{NC}}\left(\frac{M_{D}^{2}}{M_{Z}^{2}}\right)+F_{\mathrm{h}}\left(\frac{M_{D}^{2}}{M_{H}^{2}}\right)+F_{\mathrm{CC}}\left(\frac{M_{D}^{2}}{M_{W}^{2}}\right)\right]\right\},
\end{aligned}
$$

The new contribution is negative it cannot explain the discrepancy

New fermions

All vector-like: masses indep. of EWSB, no anomalies

N_{R}	$(1,1,0)$ typeI seesaw	
Σ_{R}	$(1,3,1)$ typeIII seesaw	CB 09, Freitas et al. 14
E_{4}	$(1,1,-1) \quad\} 4^{\text {th }}$ generation.	Freitas et al. 14
L_{4}	$(1,2,-1 / 2)$	CB, Bordone 14
T	$(1,3,-1)$	Freitas et al. 14
D	$(1,2,-3 / 2)$	$C B$, Bordone 14

It's not possible to explain the discrepancy adding to the SM a single fermion

New scalars

$$
\begin{array}{ccc}
S_{1} & (1,1,1) & \\
S_{2} & (1,1,2) & \\
H_{2} & (1,2,1 / 2) & \text { II Higgs doublet } \\
\Delta & (1,3,1) & \text { type II seesaw } \\
T_{c}^{1 / 3} & (3,3,-1 / 3) & \\
S_{c}^{1 / 3} & (3,1,-1 / 3) & \\
S_{c}^{4 / 3} & (3,1,-4 / 3) & \text { leptoquarks } \\
D_{c}^{7 / 6} & (3,2,7 / 6) & \\
D_{c}^{1 / 6} & (3,2,1 / 6) &
\end{array}
$$

New scalars

$$
\begin{array}{cccc}
S_{1} & (1,1,1) & & \text { Coaraza Perez et al. } 95 \\
S_{2} & (1,1,2) & & \text { Gunion et al. 89 } \\
H_{2} & (1,2,1 / 2) & \text { II Higgs doublet } & \\
\Delta & (1,3,1) & \text { type II seesaw } & \text { (from } \mathrm{S}_{1} \text { and } \mathrm{S}_{2} \text { results) } \\
T_{c}^{1 / 3} & (3,3,-1 / 3) & & \\
S_{c}^{1 / 3} & (3,1,-1 / 3) & & \\
S_{c}^{4 / 3} & (3,1,-4 / 3) & \text { leptoquarks } & \\
D_{c}^{7 / 6} & (3,2,7 / 6) & & \\
D_{c}^{1 / 6} & (3,2,1 / 6) & &
\end{array}
$$

New scalars

S_{1}	$(1,1,1)$		Coaraza Perez et al. 95
S_{2}	$(1,1,2)$		Gunion et al. 89
H_{2}	$(1,2,1 / 2)$	II Higgs doublet	
Δ	$(1,3,1)$	type II seesaw	(from S_{1} and S_{2} results)
$T_{c}^{1 / 3}$	$(3,3,-1 / 3)$		
$S_{c}^{1 / 3}$	$(3,1,-1 / 3)$		
$S_{c}^{4 / 3}$	$(3,1,-4 / 3)$	leptoquarks	
$D_{c}^{7 / 6}$	$(3,2,7 / 6)$		Chakraverty et al. 01 Cheung 01
$D_{c}^{1 / 6}$	$(3,2,1 / 6)$		

New scalars

Coaraza Perez et al. 95
Gunion et al. 89
(from S_{1} and S_{2} results)

Chakraverty et al. 01 Cheung 01

$D_{c}^{1 / 6}$
$\square_{c}^{7 / 6} \quad(3,2,7 / 6)$
$(3,2,1 / 6)$
$S_{1} \quad(1,1,1)$
$S_{2} \quad(1,1,2)$
$H_{2} \quad(1,2,1 / 2) \quad$ II Higgs doublet
$\Delta \quad(1,3,1) \quad$ type II seesaw
$(3,3,-1 / 3)$
$(3,1,-1 / 3)$
$S_{c}^{4 / 3}$
$(3,1,-4 / 3)$
$T_{c}^{1 / 3}$

New scalars

The \tilde{b}_{R} of the Higgsinoless MSSM

It's a SUSY model without R-parity (with $U(1)_{R}$) where there are NO chiral Higgs superfields: the Higgs is identified with a sneutrino

The \tilde{b}_{R} of the Higgsinoless MSSM

It's a SUSY model without R-parity (with $U(1)_{R}$) where there are NO chiral Higgs superfields: the Higgs is identified with a sneutrino

$$
W \supset Y_{d} L_{\alpha} Q D \quad L_{\alpha}=\left(\tilde{\ell}_{\alpha} \equiv H, \ell_{\alpha}\right)
$$

The \tilde{b}_{R} of the Higgsinoless MSSM

It's a SUSY model without R-parity (with $U(1)_{R}$) where there are NO chiral Higgs superfields: the Higgs is identified with a sneutrino

$$
\begin{aligned}
W \supset Y_{d} L_{\alpha} Q D \quad L_{\alpha}=\left(\tilde{\ell}_{\alpha}=H, \ell_{\alpha}\right) \\
>Y_{d} h^{0} \bar{b}_{L} b_{R}+Y_{d} l_{\alpha} t_{L} \tilde{b}_{R}+\ldots
\end{aligned}
$$

The \tilde{b}_{R} of the Higgsinoless MSSM

It's a SUSY model without R-parity (with U(1) $)_{R}$) where there are NO chiral Higgs superfields: the Higgs is identified with a sneutrino

$$
\begin{aligned}
& W \supset Y_{d} L_{\alpha} Q D L_{\alpha}=\left(\tilde{\ell}_{\alpha} \equiv H, \ell_{\alpha}\right) \\
& \longrightarrow Y_{d} h^{0} \bar{b}_{L} b_{R}+Y_{d} l_{\alpha} t_{L} \tilde{b}_{R}+\ldots
\end{aligned}
$$

In our case $l_{\alpha} \equiv \mu$, the b_{R} coupling is fixed to be Y_{b}

$$
\begin{array}{r}
a_{\mu}^{L Q} \propto \frac{v^{2} Y_{b}^{2}}{M_{L Q}^{2}} \quad \text { we have a prediction for } M L Q \\
M_{\tilde{b}_{R}} \sim 500 \mathrm{GeV}
\end{array}
$$

The \tilde{b}_{R} of the Higgsinoless MSSM

In the Higgsinoless MSSM we can explain the ($\mathrm{g}-2$) anomaly with a sbottom of mass $M_{\tilde{b}_{R}} \sim 500 \mathrm{GeV} \quad$ CB Bordone 14

The \tilde{b}_{R} of the Higgsinoless MSSM

In the Higgsinoless MSSM we can explain the ($\mathrm{g}-2$) anomaly with a sbottom of mass $M_{\tilde{b}_{R}} \sim 500 \mathrm{GeV} \quad$ CB Bordone 14

Which are the current bounds?

The \tilde{b}_{R} of the Higgsinoless MSSM

In the Higgsinoless MSSM we can explain the ($\mathrm{g}-2$) anomaly with a sbottom of mass $M_{\tilde{b}_{R}} \sim 500 \mathrm{GeV}$

CB Bordone 14
Which are the current bounds?
ATLAS 13 Bounds from decay into bv: $\mathrm{Br}=1 \quad \mathrm{M}>620 \mathrm{GeV}$
$\mathrm{Br}=0.6 \quad \mathrm{M}>520 \mathrm{GeV}$

The \tilde{b}_{R} of the Higgsinoless MSSM

In the Higgsinoless MSSM we can explain the ($\mathrm{g}-2$) anomaly with a sbottom of mass $M_{\tilde{b}_{R}} \sim 500 \mathrm{GeV}$

CB Bordone 14
Which are the current bounds?
ATLAS 13 Bounds from decay into bv:

$$
\begin{array}{ll}
\mathrm{Br}=1 & \mathrm{M}>620 \mathrm{GeV} \\
\mathrm{Br}=0.6 & \mathrm{M}>520 \mathrm{GeV}
\end{array}
$$

In our model: $\begin{aligned} \tilde{b}_{R} \rightarrow & b_{L} \nu_{L} \\ & t_{L} l_{L} \longleftarrow \text { same BR } \\ & \left(b_{R} \tilde{G}\right)\end{aligned}$
This possibility is viable, to confirm/exclude it look for final states with top and charged leptons!!!

Conclusions

- We have considered single particle extensions of the SM (scalar \& fermion)
- A single new fermion cannot explain the $(\mathrm{g}-2)_{\mu}$ anomaly
- Only 3 scalars -2 leptoquarks and a second Higgs doublet- can do it
- The \tilde{b}_{R} of the Higgsinoless MSSM could solve the $(g-2)_{\mu}$ puzzle and we have a prediction for its mass: $M_{\tilde{b}_{R}} \sim 500 \mathrm{GeV}$
- Most of these solutions are going to be tested @ LHC13
- Wait for new LHC run and new $(\mathrm{g}-2)_{\mu}$ experiment!

