

Carla Biggio Universita` di Genova

Minimal muon anomalous magnetic moment

Based on JHEP 02 (2015) 099 in collaboration with M. Bordone

> INVISIBLES15 Workshop Madrid, 22–26 June 2015

The $(g-2)_{\mu}$ anomaly

$$a_{\mu}^{exp} = 116592080(63) \cdot 10^{-11}$$

Brookhaven 2006

$$a_{\mu}^{SM} = 116591790(65) \cdot 10^{-11}$$

Jegerlehner, Nyffeler 2009 (e+e- annih.)

$$\Delta a_{\mu} = 290(90) \cdot 10^{-11}$$

3.1σ

The $(g-2)_{\mu}$ anomaly

$$a_{\mu}^{exp} = 116592080(63) \cdot 10^{-11}$$

Brookhaven 2006

$$a_{\mu}^{SM} = 116591790(65) \cdot 10^{-11}$$

Jegerlehner, Nyffeler 2009 (e+e- annih.)

$$\Delta a_{\mu} = 290(90) \cdot 10^{-11}$$

 3.1σ

3 ways out:

- theoretical: bad estimation of hadronic contribution
 disfavoured Passera et al. 2008-09
 experimental: > wait for new experiment Fermilab J-PARC
- new physics !!!

The $(g-2)_{\mu}$ anomaly

$$a_{\mu}^{exp} = 116592080(63) \cdot 10^{-11}$$

Brookhaven 2006

$$a_{\mu}^{SM} = 116591790(65) \cdot 10^{-11}$$

Jegerlehner, Nyffeler 2009 (e+e- annih.)

$$\Delta a_{\mu} = 290(90) \cdot 10^{-11}$$

 3.1σ

3 ways out:

 theoretical: bad estimation of hadronic contribution
 disfavoured Passera et al. 2008-09
 experimental: > wait for new experiment ^{Fermilab} J-PARC
 new physics !!!

adopt this optimistic option :)

Explaining Δa_{μ} with a single new particle Assumptions: 1. add only 1 particle to the SM 2. consider only fermions and scalars

2. consider only fermions and scalars

In the SM (g-2) is a D=6 operator

 $\frac{1}{\Lambda^2} \bar{L} \sigma^{\mu\nu} e_R \phi F_{\mu\nu} + h.c.$

At 1 loop, for example:

Explaining Δa_{μ} with a single new particle Assumptions: 1. add only 1 particle to the SM

2. consider only fermions and scalars

In the SM (g-2) is a D=6 operator

 $\frac{1}{\Lambda^2} \bar{L} \sigma^{\mu\nu} e_R \phi F_{\mu\nu} + h.c.$

At 1 loop, for example:

Requirements:

Lorentz invariance
 Gauge invariance
 Renormalizability

All vector-like: masses indep. of EWSB, no anomalies

All vector-like: masses indep. of EWSB, no anomalies

 N_R (1,1,0) typeI seesaw Σ_R (1,1,0) typeI seesaw (1,3,1) typeIII seesaw (1,3,1) typeIII seesaw (1,3,1) $\begin{array}{ccc} E_4 & (1,1,-1) \\ L_4 & (1,2,-1/2) \end{array} \begin{array}{c} {}^{\phantom{\phantom{}}} {}^{\phantom{}} {}^{\phantom{}}} {}^{\phantom{}} {}$ T (1, 3, -1) D (1, 2, -3/2)

All vector-like: masses indep. of EWSB, no anomalies

> *Only L₄ gives a positive contribution but too small (EWPT)

All vector-like: masses indep. of EWSB, no anomalies

> *Only L₄ gives a positive contribution but too small (EWPT)

The contribution of $D \sim (1,2,-3/2)$

$$D = \begin{pmatrix} \chi \\ \Psi \end{pmatrix} Q=1 \\ Q=2$$

$$a_{\mu}^{\rm SM+D} = \frac{m_{\mu}^2 G_F}{24\sqrt{2}\pi^2} \left\{ \frac{\mathsf{SM}}{(3-4\cos^2\theta_W)^2 + 5} + \frac{v^2 \left|\lambda_{D\mu}\right|^2}{M_D^2} \left[-\frac{11}{4} - 4\cos^2\theta_W + F_{\rm NC}\left(\frac{M_D^2}{M_Z^2}\right) + F_{\rm h}\left(\frac{M_D^2}{M_H^2}\right) + F_{\rm CC}\left(\frac{M_D^2}{M_W^2}\right) \right] \right\},$$

CB, Bordone 14

The contribution of D \sim (1,2,-3/2)

$$D = \begin{pmatrix} \chi \\ \Psi \end{pmatrix}^{\mathbb{Q}=1}_{\mathbb{Q}=2}$$

CB, Bordone 14

$$a_{\mu}^{\rm SM+D} = \frac{m_{\mu}^2 G_F}{24\sqrt{2}\pi^2} \left\{ \frac{\mathsf{SM}}{(3-4\cos^2\theta_W)^2 + 5} + \frac{v^2 \left|\lambda_{D\mu}\right|^2}{M_D^2} \left[-\frac{11}{4} - 4\cos^2\theta_W + F_{\rm NC}\left(\frac{M_D^2}{M_Z^2}\right) + F_{\rm h}\left(\frac{M_D^2}{M_H^2}\right) + F_{\rm CC}\left(\frac{M_D^2}{M_W^2}\right) \right] \right\},$$

The new contribution is negative it cannot explain the discrepancy

All vector-like: masses indep. of EWSB, no anomalies

> It's not possible to explain the discrepancy adding to the SM a single fermion

(1, 1, 1) S_1 (1, 1, 2) S_2 (1, 2, 1/2) H_2 II Higgs doublet type II seesaw (1, 3, 1) Δ $T_{c}^{1/3}$ (3, 3, -1/3) $S_{c}^{1/3}$ (3, 1, -1/3) $S_{c}^{4/3}$ (3, 1, -4/3)leptoquarks $D_{c}^{7/6}$ (3, 2, 7/6) $D_{c}^{1/6}$ (3, 2, 1/6)

 S_1 S_2 H_2 Δ $T_{c}^{1/3}$ $S_{c}^{1/3}$ $S_{c}^{4/3}$ $D_{c}^{7/6}$ $D_{c}^{1/6}$

(1, 1, 1) $(1, \overline{1, 2})$ (1, 2, 1/2)(1, 3, 1)(3, 3, -1/3)(3, 1, -1/3)(3, 1, -4/3)(3, 2, 7/6)(3, 2, 1/6)

II Higgs doublet type II seesaw

leptoquarks

Coaraza Perez et al. 95

Gunion et al. 89

(from S_1 and S_2 results)

 S_1 S_2 H_2 Δ $T_{c}^{1/3}$ $S_{c}^{1/3}$ $S_{c}^{4/3}$ $D_{c}^{7/6}$ $D_{c}^{1/6}$

(1, 1, 1)(1, 1, 2)(1, 2, 1/2)(1, 3, 1)(3, 3, -1/3)(3, 1, -1/3)(3, 1, -4/3)(3, 2, 7/6)(3, 2, 1/6)

II Higgs doublet type II seesaw

leptoquarks

Coaraza Perez et al. 95 Gunion et al. 89

(from S_1 and S_2 results)

Chakraverty et al. 01 Cheung 01

Only these because they have both L and R couplings ➤ enhancement with top (charm) mass

II Higgs doublet type II seesaw

leptoquarks

Coaraza Perez et al. 95 Gunion et al. 89 Broggio et al. 14 (from S1 and S2 results)

> Chakraverty et al. 01 Cheung 01

In a particular 2HDM if lighter than 200 GeV Only these because they have both L and R couplings ➤ enhancement with top (charm) mass

Riva, CB, Pomarol 12

It's a SUSY model without R-parity (with $U(1)_R$) where there are NO chiral Higgs superfields: the Higgs is identified with a sneutrino

The b_R of the Higgsinoless MSSM

Riva, CB, Pomarol 12

It's a SUSY model without R-parity (with $U(1)_R$) where there are NO chiral Higgs superfields: the Higgs is identified with a sneutrino

$W \supset Y_d L_\alpha Q D$

 $L_{\alpha} = (\tilde{\ell}_{\alpha} \equiv H, \ell_{\alpha})$

Riva, CB, Pomarol 12

It's a SUSY model without R-parity (with $U(1)_R$) where there are NO chiral Higgs superfields: the Higgs is identified with a sneutrino

 $W \supset Y_d L_\alpha Q D \qquad L_\alpha = (\tilde{\ell}_\alpha \equiv H, \ell_\alpha)$ $\searrow Y_d h^0 \bar{b}_L b_R + Y_d \ell_\alpha t_L \tilde{b}_R + \dots$

Riva, CB, Pomarol 12

It's a SUSY model without R-parity (with $U(1)_R$) where there are NO chiral Higgs superfields: the Higgs is identified with a sneutrino

 $L_{\alpha} = (\tilde{\ell}_{\alpha} \equiv H, \ell_{\alpha})$ $W \supset Y_d L_\alpha QD$ $\searrow Y_d h^0 \overline{b}_L b_R + Y_d l_\alpha t_L \widetilde{b}_R + \dots$

In our case $\ l_lpha \equiv \mu$, the b_R coupling is fixed to be Y_b

 $a_{\mu}^{LQ} \propto rac{v^2 Y_b^2}{M_{LQ}^2}$ we have a prediction for M_{LQ} $M_{\tilde{b}_R} \sim 500 {\rm GeV}$

In the Higgsinoless MSSM we can explain the (g-2) anomaly with a sbottom of mass $M_{{\tilde b}_B}\sim 500~{
m GeV}$ CB Bordone 14

In the Higgsinoless MSSM we can explain the (g-2) anomaly with a sbottom of mass $M_{\tilde{b}_B}\sim 500~{
m GeV}$ CB Bordone 14

Which are the current bounds?

The b_R of the Higgsinoless MSSM

In the Higgsinoless MSSM we can explain the (g-2) anomaly with a sbottom of mass $M_{\tilde{h}_P}\sim 500~{
m GeV}$ CB Bordone 14

Which are the current bounds?

ATLAS 13 Bounds from decay into bv: Br=1 M>620 GeV Br=0.6 M>520 GeV

In the Higgsinoless MSSM we can explain the (g–2) anomaly with a sbottom of mass $M_{{ ilde h}_B}\sim 500~{
m GeV}$ CB Bordone 14

Which are the current bounds?

ATLAS 13 Bounds from decay into bv: Br=1 M>620 GeV Br=0.6 M>520 GeV

In our model: $\tilde{b}_R \rightarrow \begin{array}{c} b_L \nu_L \\ t_L l_L \\ (b_R \tilde{G}) \end{array}$ same BR

This possibility is viable, to confirm/exclude it look for final states with top and charged leptons!!!

Conclusions

 We have considered single particle extensions of the SM (scalar & fermion)

- A single new fermion cannot explain the $(g-2)_{\mu}$ anomaly
- Only 3 scalars -2 leptoquarks and a second Higgs doublet- can do it
- The \tilde{b}_R of the Higgsinoless MSSM could solve the (g-2)_µ puzzle and we have a prediction for its mass: $M_{\tilde{b}_R} \sim 500~GeV$
- Most of these solutions are going to be tested @ LHC13
- Wait for new LHC run and new (g-2)_μ experiment!
 A constant