Constraining discrete flavour symmetries with neutrino oscillation experiments

Peter Ballett
IPPP, Durham University

Invisibles 15 Workshop - IFT/Thyssen-Bornemisza Museum, Madrid

23rd June 2015
${ }^{\text {N }} \underset{\text { University }}{\text { Durham }}$
University

Outline of talk

(1) What do we know about leptonic flavour?
(2) Parameter correlations from discrete symmetries - Semi-direct A_{5} with generalised CP

(3) Conclusions

Outline of talk

(1) What do we know about leptonic flavour?

(2) Parameter correlations from discrete symmetries

 - Semi-direct A_{5} with generalised CP
Leptonic flavour

Leptonic flavour: current knowledge

Leptonic flavour: some explanation?

Outline of talk

(1) What do we know about leptonic flavour?

(2) Parameter correlations from discrete symmetries

- Semi-direct A_{5} with generalised CP
(3) Conclusions

Leptonic flavour symmetries

- Extend the SM symmetry group by a discrete non-Abelian factor. Assign fields to representations of this group.

$$
G_{S M} \rightarrow G_{S M} \times G_{\mathrm{F}} \quad \text { and } \quad\left(\begin{array}{l}
L_{e} \\
L_{\mu} \\
L_{\tau}
\end{array}\right) \sim \underline{3}
$$

- The symmetry restricts the most general mass terms of the theory:

$$
T^{\dagger}\left(m_{e}^{\dagger} m_{e}\right) T=m_{e}^{\dagger} m_{e} \quad \text { and } \quad S^{\top} m_{\nu} S=m_{\nu}
$$

- The full symmetry cannot be exact at low-energies whilst maintaining distinct neutrino masses. However, a set of residual symmetries may enforce a given mixing pattern or, most generally, specific correlations between observables.

Parameter correlations

In some cases, the symmetry alone does not predict the full PMNS matrix. Instead only predicting a constrained form.

For example...

If $G_{\nu}=\mathbb{Z}_{2}$ we see that only a single column of the PMNS matrix can be specified:

$$
\text { e.g. } \quad U_{\text {PMNS }}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & ? & ? \\
\frac{1}{\sqrt{6}} & ? & ? \\
\frac{1}{\sqrt{6}} & ? & ?
\end{array}\right)
$$

which leads to correlations between mixing parameters:

$$
s=\sqrt{1-\frac{2 r^{2}}{2-r^{2}}} \quad \text { and } \quad a \approx r \cos \delta,
$$

s.t $\sin \theta_{23} \equiv \frac{1+a}{\sqrt{2}}, \sin \theta_{12}=\frac{1+s}{\sqrt{3}}$, and $\sin \theta_{13} \equiv \frac{r}{\sqrt{2}}$, (see King 0710.0530).

Outline of talk

(1) What do we know about leptonic flavour?

(2) Parameter correlations from discrete symmetries

- Semi-direct A_{5} with generalised CP
(3) Conclusions

Generalised CP symmetries

- With three flavours, a generalised CP symmetry combines a flavour transformation with a CP transformation:

$$
\Psi_{\alpha} \rightarrow X_{\alpha \beta} \Psi_{\beta}^{\mathrm{CP}}
$$

- The theoretical consistency of this picture is constrained and the form of X must be related to an automorphism of the flavour group. See Holthausen, Lindner \& Schmidt 1211.6953, Chen et al. 1402.0507.
- This creates novel constraints on the mass matrix, specifically regarding its complex phases,

$$
X m_{\nu} X=m_{\nu}^{*}
$$

- Taking this symmetry to be a residual symmetry of the lepton mass matrix can lead to predictions of the PMNS matrix including complex phases: δ, α_{21} and α_{31}. See e.g. Feruglio, Hagedorm \& Ziegler 1211.5560.

A_{5} with GCP

- In 1503.07543 , we ${ }^{\dagger}$ considered the group A_{5} and systematically computed all of the predictions from different combinations of residual symmetries with GCP.

$$
\mathrm{A}_{5}=\left\langle S, T \mid S^{2}=T^{5}=(S T)^{3}\right\rangle
$$

such that,

$$
S=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad T=\frac{1}{2}\left(\begin{array}{ccc}
1 & -\varphi & -\varphi_{g} \\
\varphi & -\varphi_{g} & -1 \\
-\varphi_{g} & 1 & \varphi
\end{array}\right)
$$

- We focus on the case when $G_{\nu}=\mathbb{Z}_{2}$, which produces parameter correlations similar to the atmospheric sum rules mentioned previously; however, the phases are more constrained.

A_{5} with GCP: predictions

- Taking $G=A_{5}$ with GCP, breaking into $G_{\nu}=\mathbb{Z}_{2}$ with GCP and a cyclic group for G_{e}, we find 10 distinct sets of observables.

G_{e}	θ_{12}	θ_{23}	$\sin \alpha_{j i}$	δ
\mathbb{Z}_{3}	$35.27^{\circ}+10.13^{\circ} r^{2}$	45°	0	90°
\mathbb{Z}_{3}	$35.27+10.13{ }^{2}$	45	0	270°
\mathbb{Z}_{5}	$31.72^{\circ}+8.85^{\circ} r^{2}$	$45^{\circ} \pm 25.04^{\circ} r$	0	0°
				180°
		45°	0	90°
				270°
$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$36.00^{\circ}-34.78^{\circ} r^{2}$	$31.72^{\circ}+55.76^{\circ} r$	0	0°
				180°
		$58.28^{\circ}-55.76^{\circ} r$	0	0°
				180°

A_{5} with GCP: θ_{12}

- Three distinct predictions for θ_{12} in terms of θ_{13}.

- Change in θ_{12} over 3σ range of r only $0.07^{\circ}, 0.08^{\circ}$ and 0.13° for $\mathbb{Z}_{3}, \mathbb{Z}_{5}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Testing these relationships in themselves will be beyond the capabilities of upcoming reactor experiments.

A_{5} with GCP: θ_{23} and δ

- We find an interesting relationship between θ_{23} and δ.

G_{e}	θ_{12}	θ_{23}	$\sin \alpha_{j}$	δ
\mathbb{Z}_{3}	$35.27^{\circ}+10.13^{\circ} r^{2}$	45°	0	90°
				270°
\mathbb{Z}_{5}	$31.72^{\circ}+8.85^{\circ} r^{2}$	$45^{\circ} \pm 25.04^{\circ} r$	0	0°
				180°
		45°	0	90°
				270°
$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$36.00^{\circ}-34.78^{\circ} r^{2}$	$31.72^{\circ}+55.76^{\circ} r$	0	0°
				180°
		$58.28^{\circ}-55.76^{\circ} r$	0	0°
				180°

A_{5} with GCP: θ_{23} and δ

- We find an interesting relationship between θ_{23} and δ.

G_{e}	θ_{12}	θ_{23}	$\sin \alpha_{j}$	δ
\mathbb{Z}_{3}	$35.27^{\circ}+10.13^{\circ} r^{2}$	45°	0	90°
				270°
\mathbb{Z}_{5}	$31.72^{\circ}+8.85^{\circ} r^{2}$	$45^{\circ} \pm 25.04^{\circ} r$	0	0°
				180°
		45°	0	90°
				270°
$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$36.00^{\circ}-34.78^{\circ} r^{2}$	$31.72^{\circ}+55.76^{\circ} r$	0	0°
				180°
		$58.28^{\circ}-55.76^{\circ} r$	0	0°
				180°

A_{5} with GCP: θ_{23} and δ

- Taking an order-5 generator in the charged-lepton sector, we find two choices depending on X :

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\frac{\varphi}{\sqrt{2+\varphi}} & \frac{1}{\sqrt{2+\varphi}} & 0 \\
-\frac{1}{\sqrt{4+2 \varphi}} & \frac{\varphi}{\sqrt{4+2 \varphi}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{4+2 \varphi}} & -\frac{\varphi}{\sqrt{4+2 \varphi}} & \frac{1}{\sqrt{2}}
\end{array}\right) R_{13}(\theta)\left(\begin{array}{ccc}
\frac{\varphi}{\sqrt{2+\varphi}} & -\frac{i}{\sqrt{2+\varphi}} & 0 \\
-\frac{1}{\sqrt{4+2 \varphi}} & \frac{\varphi}{\sqrt{4+2 \varphi}} & \frac{1}{\sqrt{2}} \\
\frac{i}{\sqrt{4+2 \varphi}} & -\frac{\varphi}{\sqrt{4+2 \varphi}} & \frac{1}{\sqrt{2}}
\end{array}\right) R_{13}(\theta) \\
& \sin ^{2} \theta_{23}=\frac{1}{2} \frac{\left(\sin \theta+\sqrt{1+\varphi^{2}} \cos \theta\right)^{2}}{1+\varphi^{2} \cos ^{2} \theta} \\
& \delta= \begin{cases}0 & \theta \in\left(0, \frac{\pi}{2}\right) \\
\pi & \theta \in\left(\frac{\pi}{2}, \pi\right)\end{cases} \\
& \begin{array}{c}
\sin ^{2} \theta_{23}=\frac{1}{2} \quad \forall \theta \\
\delta=\left\{\begin{array}{cl}
\frac{3 \pi}{2} & \theta \in\left(0, \frac{\pi}{2}\right) \\
\frac{\pi}{2} & \theta \in\left(\frac{\pi}{2}, \pi\right)
\end{array}\right.
\end{array}
\end{aligned}
$$

Non-maximal $\theta_{23} \&$ Dirac CP conservation

- If δ is unobserved at T 2 K and $\mathrm{NO} \nu \mathrm{A}$, then we can look for information in the (possible) deviation from $\theta_{23}=45^{\circ}$.

- For $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, the deviation from maximality is around 1°. However, a greater than 2σ exclusion of maximality would be possible for \mathbb{Z}_{5} with T 2 K and $\mathrm{NO} \nu \mathrm{A}$.

In conclusion...

- Parameter correlations, predicted in some models of discrete symmetries, are attractive (and accessible) signatures of fairly generic model-building ideas.
- I discussed a recent study on A_{5} with a generalised CP. We found 10 distinct sets of parameter correlations.
- High-precision θ_{12} measurements (JUNO, RENO-50) will be able to distinguish between these candidates; although, the correlations only weakly depend on θ_{13}.
- $\theta_{23}-\delta$ correlations are interesting in these models:
- maximal-maximal predictions for θ_{23} and $\delta(\mathrm{T} 2 \mathrm{~K}, \mathrm{NO} \nu \mathrm{A})$
- CP conservation with $\theta_{23}-\theta_{13}$ measurements (T2HK, DUNE).

Thank you.

backup slides

Solar sum rules

- The PMNS matrix measures the discrepancy between charged lepton and neutrino mass bases w.r.t a common flavour basis.

$$
U_{\mathrm{PMNS}}=U_{e}^{\dagger} U_{\nu}
$$

such that

$$
U_{e}^{\dagger} m_{e}^{\dagger} m_{e} U_{e}=\operatorname{Diag}\left(m_{e}^{2}, m_{\mu}^{2}, m_{\tau}^{2}\right) \quad U_{\nu}^{\top} m_{\nu} U_{\nu}=\operatorname{Diag}\left(m_{1}, m_{2}, m_{3}\right)
$$

- Leading-order mass matrices may be predominately symmetric but with higher-order symmetry violating terms. In the lepton sector, this would lead to

$$
U_{e}=U_{e}^{\text {Symmetric }} V^{\text {Correction }} \quad \Longrightarrow \quad U_{\text {PMNS }}=V^{\text {Correction }} U_{0}
$$

Solar sum rules

- We considered PMNS matrices of the form

$$
U_{\mathrm{PMNS}}=U_{23}^{e \dagger} U_{12}^{e \dagger} R_{23}^{\nu} R_{12}^{\nu} P
$$

where $R_{i j}$ denotes a real rotation from the neutrino sector, $U_{i j}$ a unitary transformation in the $i j$-plane, and P a diagonal matrix of phases.

- There is a simple derivation for a prediction of $\cos \delta$. Multiplying out the PMNS matrix above,

$$
\left|U_{\tau 1} / U_{\tau 2}\right|=\tan \theta_{12}^{\nu}
$$

which, in terms of observable mixing parameters, can be expressed as

$$
\cos \delta=\frac{t_{23} s_{12}^{2}+s_{13}^{2} c_{12}^{2} / t_{23}-s_{12}^{\nu 2}\left(t_{23}+s_{13}^{2} / t_{23}\right)}{\sin 2 \theta_{12} s_{13}}
$$

Solar sum rules: leading-order patterns

Survey of possibilities finds 4 , all with $\theta_{13}^{\nu}=0$ and $\theta_{23}^{\nu}=\frac{\pi}{4}$:

$$
\begin{gathered}
\theta_{12}^{\nu}=45^{\circ} \\
\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right)=35.3^{\circ} \\
\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right) \\
\left(\begin{array}{ccc}
\frac{\varphi}{\sqrt{2+\varphi}} & \frac{1}{\sqrt{2+\varphi}} & 0 \\
-\frac{1}{\sqrt{4+2 \varphi}} & \frac{\varphi}{\sqrt{4+2 \varphi}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{4+2 \varphi}} & -\frac{\varphi}{\sqrt{4+2 \varphi}} & \frac{1}{\sqrt{2}}
\end{array}\right) \quad\left(\begin{array}{ccc}
\theta_{12}^{\nu}=20.9^{\circ} \\
\frac{\varphi}{\sqrt{3}} & \frac{\varphi_{g}}{\sqrt{3}} & 0 \\
-\frac{\varphi_{g}}{\sqrt{6}} & \frac{\varphi}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\
\frac{\varphi_{g}}{\sqrt{6}} & -\frac{\varphi}{\sqrt{6}} & \frac{1}{\sqrt{2}}
\end{array}\right)
\end{gathered}
$$

Solar sum rules: predictions for δ

- We can use global data to make statistical predictions for $\cos \delta$.

Figure from PB, King, Luhn, Pascoli, Schmidt 1410.7573.

