Constraining discrete flavour symmetries with neutrino oscillation experiments

Peter Ballett IPPP, Durham University

Invisibles 15 Workshop - IFT/Thyssen-Bornemisza Museum, Madrid

23rd June 2015

2 Parameter correlations from discrete symmetries Semi-direct A₅ with generalised CP

1 What do we know about leptonic flavour?

Parameter correlations from discrete symmetries
 Semi-direct A₅ with generalised CP

Leptonic flavour

Leptonic flavour: current knowledge

Leptonic flavour: some explanation?

What do we know about leptonic flavour?

Parameter correlations from discrete symmetries

• Semi-direct A₅ with generalised CP

3 Conclusions

Leptonic flavour symmetries

• Extend the SM symmetry group by a discrete non-Abelian factor. Assign fields to representations of this group.

$$G_{\rm SM} o G_{\rm SM} imes G_{\rm F}$$
 and $\begin{pmatrix} L_e \\ L_\mu \\ L_\tau \end{pmatrix} \sim \underline{\mathbf{3}}$

(1)

• The symmetry restricts the most general mass terms of the theory:

$$T^{\dagger}\left(m_{e}^{\dagger}m_{e}
ight)T=m_{e}^{\dagger}m_{e}$$
 and $S^{\mathsf{T}}m_{
u}S=m_{
u}.$

 The full symmetry cannot be exact at low-energies whilst maintaining distinct neutrino masses. However, a set of residual symmetries may enforce a given mixing pattern or, most generally, specific correlations between observables.

Parameter correlations

In some cases, the symmetry alone does not predict the full PMNS matrix. Instead only predicting a constrained form.

For example...

If $G_{\nu} = \mathbb{Z}_2$ we see that only a single column of the PMNS matrix can be specified:

e.g.
$$U_{\text{PMNS}} = \begin{pmatrix} \sqrt{\frac{2}{3}} & ? & ? \\ \frac{1}{\sqrt{6}} & ? & ? \\ \frac{1}{\sqrt{6}} & ? & ? \end{pmatrix}$$

which leads to correlations between mixing parameters:

$$s = \sqrt{1 - rac{2r^2}{2 - r^2}}$$
 and $a \approx r \cos \delta$,

s.t
$$\sin \theta_{23} \equiv \frac{1+a}{\sqrt{2}}$$
, $\sin \theta_{12} = \frac{1+s}{\sqrt{3}}$, and $\sin \theta_{13} \equiv \frac{r}{\sqrt{2}}$, (see King 0710.0530).

What do we know about leptonic flavour?

Parameter correlations from discrete symmetries
 Semi-direct A₅ with generalised CP

Generalised CP symmetries

• With three flavours, a generalised CP symmetry combines a flavour transformation with a CP transformation:

$$\Psi_{lpha} o X_{lphaeta} \Psi^{\mathsf{CP}}_{eta}$$

- The theoretical consistency of this picture is constrained and the form of X must be related to an *automorphism of the flavour* group. See Holthausen, Lindner & Schmidt 1211.6953, Chen *et al.* 1402.0507.
- This creates novel constraints on the mass matrix, specifically regarding its complex phases,

$$Xm_{\nu}X = m_{\nu}^*$$

• Taking this symmetry to be a residual symmetry of the lepton mass matrix can lead to predictions of the PMNS matrix including complex phases: δ , α_{21} and α_{31} . See e.g. Feruglio, Hagedorn & Ziegler 1211.5560.

11 / 26

A₅ with GCP

• In 1503.07543, we[†] considered the group A₅ and systematically computed all of the predictions from different combinations of residual symmetries with GCP.

$$\mathsf{A}_5 = \langle S, T \, | \, S^2 = T^5 = (ST)^3 \rangle$$

such that,

$$S = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } T = \frac{1}{2} \begin{pmatrix} 1 & -\varphi & -\varphi_g \\ \varphi & -\varphi_g & -1 \\ -\varphi_g & 1 & \varphi \end{pmatrix}$$

We focus on the case when G_ν = Z₂, which produces parameter correlations similar to the atmospheric sum rules mentioned previously; however, the phases are more constrained.

[†] PB, Pascoli & Turner.

A_5 with GCP: predictions

Taking G = A₅ with GCP, breaking into G_ν = Z₂ with GCP and a cyclic group for G_e, we find 10 distinct sets of observables.

Ge	θ_{12}	θ_{23}	$\sin lpha_{ji}$	δ
\mathbb{Z}_3	$35.27^{\circ} + 10.13^{\circ} r^2$	45°	0	90°
				270°
\mathbb{Z}_5	$31.72^{\circ} + 8.85^{\circ} r^2$	$45^\circ\pm25.04^\circ$ r	0	0°
				180°
		45°	0	90°
				270°
$\mathbb{Z}_2 imes \mathbb{Z}_2$	36.00° – 34.78° r ²	$31.72^{\circ} + 55.76^{\circ} r$	0	0°
				180°
		58.28° - 55.76° r	0	0°
				180°

From PB, Pascoli & Turner 1503.07543. See also Li & Ding 1503.03711 and De lura, Hagedorn & Meloni 1503.04140.

A₅ with GCP: θ_{12}

• Three distinct predictions for θ_{12} in terms of θ_{13} .

Change in θ₁₂ over 3σ range of r only 0.07°, 0.08° and 0.13° for Z₃, Z₅ and Z₂ × Z₂. Testing these relationships in themselves will be beyond the capabilities of upcoming reactor experiments.

A₅ with GCP: θ_{23} and δ

• We find an interesting relationship between θ_{23} and δ .

G_e	θ_{12}	θ_{23}	$\sin lpha_{ji}$	δ
\mathbb{Z}_3	$35.27^{\circ} + 10.13^{\circ} r^2$	45°	0	90°
				270°
\mathbb{Z}_5	$31.72^{\circ} + 8.85^{\circ} r^2$	$45^\circ\pm25.04^\circ$ r	0	0°
				180°
		45°	0	90°
				270°
$\mathbb{Z}_2 imes \mathbb{Z}_2$	36.00° – 34.78° r ²	$31.72^{\circ} + 55.76^{\circ} r$	0	0°
				180°
		58.28° – 55.76° r	0	0°
				180°

A₅ with GCP: θ_{23} and δ

• We find an interesting relationship between θ_{23} and δ .

G_e	θ_{12}	θ_{23}	$\sin \alpha_{ji}$	δ
\mathbb{Z}_3	$35.27^{\circ} + 10.13^{\circ} r^2$	45°	0	90°
				270°
\mathbb{Z}_5	$31.72^{\circ} + 8.85^{\circ} r^2$	$45^\circ\pm25.04^\circ$ r	0	0°
				180°
		45°	0	90°
				270°
$\mathbb{Z}_2 imes \mathbb{Z}_2$	36.00° – 34.78° r ²	31.72° + 55.76° r	0	0°
				180°
		58.28° – 55.76° r	0	0°
				180°

A₅ with GCP: θ_{23} and δ

• Taking an order-5 generator in the charged-lepton sector, we find two choices depending on X:

PB, Pascoli, Turner 1503.07543.

P. Ballett (IPPP, Durham)

Non-maximal θ_{23} & Dirac CP conservation

• If δ is unobserved at T2K and NO ν A, then we can look for information in the (possible) deviation from $\theta_{23} = 45^{\circ}$.

 For Z₂ × Z₂, the deviation from maximality is around 1°. However, a greater than 2σ exclusion of maximality would be possible for Z₅ with T2K and NOνA.

In conclusion...

- Parameter correlations, predicted in some models of discrete symmetries, are attractive (and accessible) signatures of fairly generic model-building ideas.
- I discussed a recent study on A₅ with a generalised CP. We found 10 distinct sets of parameter correlations.
- High-precision θ_{12} measurements (JUNO, RENO-50) will be able to distinguish between these candidates; although, the correlations only weakly depend on θ_{13} .
- θ_{23} - δ correlations are interesting in these models:
 - maximal-maximal predictions for θ_{23} and δ (T2K, NO ν A)
 - CP conservation with $\theta_{23}-\theta_{13}$ measurements (T2HK, DUNE).

Thank you.

backup slides

Solar sum rules

• The PMNS matrix measures the discrepancy between charged lepton and neutrino mass bases w.r.t a common flavour basis.

$$U_{\rm PMNS} = U_e^{\dagger} U_{\nu}$$

such that

$$\boldsymbol{U}_{\boldsymbol{e}}^{\dagger}\boldsymbol{m}_{\boldsymbol{e}}^{\dagger}\boldsymbol{m}_{\boldsymbol{e}}\boldsymbol{U}_{\boldsymbol{e}}=\text{Diag}(\boldsymbol{m}_{\boldsymbol{e}}^{2},\boldsymbol{m}_{\mu}^{2},\boldsymbol{m}_{\tau}^{2})\qquad \boldsymbol{U}_{\nu}^{\mathsf{T}}\boldsymbol{m}_{\nu}\boldsymbol{U}_{\nu}=\text{Diag}\left(\boldsymbol{m}_{1},\boldsymbol{m}_{2},\boldsymbol{m}_{3}\right).$$

• Leading-order mass matrices may be predominately symmetric but with higher-order symmetry violating terms. In the lepton sector, this would lead to

$$U_e = U_e^{\text{Symmetric}} V^{\text{Correction}} \implies U_{\text{PMNS}} = V^{\text{Correction}} U_0$$

• We considered PMNS matrices of the form

 $U_{\rm PMNS} = U_{23}^{e\dagger} U_{12}^{e\dagger} R_{23}^{\nu} R_{12}^{\nu} P$

where R_{ij} denotes a real rotation from the neutrino sector, U_{ij} a unitary transformation in the *ij*-plane, and *P* a diagonal matrix of phases.

• There is a simple derivation for a prediction of $\cos \delta$. Multiplying out the PMNS matrix above,

$$|\mathit{U}_{\tau 1}/\mathit{U}_{\tau 2}| = \tan \theta_{12}^{\nu}$$

which, in terms of observable mixing parameters, can be expressed as

$$\cos \delta = \frac{t_{23}s_{12}^2 + s_{13}^2c_{12}^2/t_{23} - s_{12}^{\nu 2}(t_{23} + s_{13}^2/t_{23})}{\sin 2\theta_{12}s_{13}}$$

Solar sum rules: leading-order patterns

Survey of possibilities finds 4, all with $\theta_{13}^{\nu} = 0$ and $\theta_{23}^{\nu} = \frac{\pi}{4}$:

Solar sum rules: predictions for δ

• We can use global data to make statistical predictions for $\cos \delta$.

Figure from PB, King, Luhn, Pascoli, Schmidt 1410.7573.