Bayesian analysis of neutrino oscillation data

Johannes Bergström

June 22, 2015

(Based on work with M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz)

Invisibles15 Worskhop, Madrid

Outline

- 1 Introduction: oscillations, global fits
- 2 Bayesian inference

3 Results

- Posterior distributions
- Mass ordering
- s₂₃²
- CP-violation

Outline

1 Introduction: oscillations, global fits

2 Bayesian inference

3 Results

- Posterior distributions
- Mass ordering
- *s*²₂₃
- CP-violation

4 Conclusions

< ∃⇒

-

< 🗇 🕨

Neutrino oscillations

Neutrino oscillations

- Appearance/disappearance of neutrinos observed: solar, reactor, accelerator, atmospheric
- \bullet Neutrino oscillations \Rightarrow neutrinos massive and flavours mixed
- No color nor electromagnetic charge \Rightarrow neutrinos Majorana or Dirac particles

3 neutrinos – mixing described by unitary matrix $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{only if Majorana}}_{\text{diag}\left(e^{i\rho}, e^{i\sigma}, 1\right)}$ $s_{ij} = \sin \theta_{ij}, c_{ij} = \cos \theta_{ij}$

Global fits

Global fits

- Oscillation wavelengths $4\pi E/\Delta m_{ij}^2$
- $\bullet\,$ Different experiments sensitive to different sets of parameters \Rightarrow Global fits

<i>s</i> ² ₁₂	<i>s</i> ² ₂₃	s ² ₁₃	$\Delta m_{21}^2/10^{-5}\text{eV}^2$	$ m^2_{31(32)} /10^{-3}{ m eV}^2$
0.27 - 0.34	0.38 - 0.64	0.019 - 0.025	7.0 - 8.1	2.3 - 2.6

Gonzalez-Garcia, et al., arXiv:1409.5439, nu-fit.org \Rightarrow data used here Fogli et al., arXiv:1312.2878 Forero et al., arXiv:1405.7540

Global fits

Global fits

- Oscillation wavelengths $4\pi E/\Delta m_{ij}^2$
- $\bullet\,$ Different experiments sensitive to different sets of parameters \Rightarrow Global fits

<i>s</i> ² ₁₂	<i>s</i> ² ₂₃	s ² ₁₃	$\Delta m_{21}^2/10^{-5}\text{eV}^2$	$ m^2_{31(32)} /10^{-3}{ m eV}^2$
0.27 - 0.34	0.38 - 0.64	0.019 - 0.025	7.0 - 8.1	2.3 - 2.6

Gonzalez-Garcia, et al., arXiv:1409.5439, nu-fit.org \Rightarrow data used here Fogli et al., arXiv:1312.2878 Forero et al., arXiv:1405.7540

Global fits

- Large mixing, different from quarks
- $\bullet\,$ Some info on $\delta\,$
- Ordering of masses unknown:
 - Normal (NO): $m_3 > m_1, m_2$
 - Inverted (IO): $m_3 < m_1, m_2$

Global fits – statistical method?

Standard likelihood/ χ^2 /frequentist fit

• Easy, commonly used, reasonably well understood

-

Global fits – statistical method?

Standard likelihood/ χ^2 /frequentist fit

- Easy, commonly used, reasonably well understood
- Does not obey rules of consistent inference
- Depends on data that was never observed ("significance")
- Distributions of test statistics not always known
 - · Find out through simulations, but limited computing resources

Global fits – statistical method?

Standard likelihood/ χ^2 /frequentist fit

- Easy, commonly used, reasonably well understood
- Does not obey rules of consistent inference
- Depends on data that was never observed ("significance")
- Distributions of test statistics not always known
 - Find out through simulations, but limited computing resources

Let's do a Bayesian one! :)

Outline

Introduction: oscillations, global fits

2 Bayesian inference

3 Results

- Posterior distributions
- Mass ordering
- *s*²₂₃
- CP-violation

4 Conclusions

∢ ≣ ≯

< 17 ▶

Bayesian inference

Bayesian inference

- Proposition A associated with probability (plausibility) Pr(A)
- Related by laws of probability theory
- Update odds using data

$$\frac{\Pr(A|\mathbf{D})}{\Pr(B|\mathbf{D})} = \frac{\Pr(\mathbf{D}|A)}{\Pr(\mathbf{D}|B)} \frac{\Pr(A)}{\Pr(B)}$$

terior odds = Likelihood ratio (Bayes factor) · Prior odds

• Usually prior odds = 1

Pos

Bayesian inference

Bayesian inference

• Proposition A associated with probability (plausibility) Pr(A)

2

- Related by laws of probability theory
- Update odds using data

$$\frac{\Pr(A|\mathbf{D})}{\Pr(B|\mathbf{D})} = \frac{\Pr(\mathbf{D}|A)}{\Pr(\mathbf{D}|B)} \frac{\Pr(A)}{\Pr(B)}$$

terior odds = Likelihood ratio (Bayes factor) · Prior odds

• Usually prior odds = 1

Evidence

Model likelihood – evidence

Pos

$$\mathcal{E} = \int \mathcal{L}(\mathbf{\Theta}) \pi(\mathbf{\Theta}) \mathrm{d}^{N} \mathbf{\Theta}$$

Model likelihood = Average likelihood of model parameters

• Evidence balances quality of fit and model complexity - can favour simpler model

Bayesian inference

Bayesian inference

- Proposition A associated with probability (plausibility) Pr(A)
- Related by laws of probability theory
- Update odds using data

$$\frac{\Pr(A|\mathbf{D})}{\Pr(B|\mathbf{D})} = \frac{\Pr(\mathbf{D}|A)}{\Pr(\mathbf{D}|B)} \frac{\Pr(A)}{\Pr(B)}$$
Posterior odds = Likelihood ratio (Bayes factor) · Prior odds

• Usually prior odds = 1

Jeffreys scale: translation into English

$ \log(odds) $	Interpretation
< 1.0	Inconclusive
1.0	Weak evidence
2.5	Moderate evidence
5.0	Strong evidence

Oscillation parameters and priors

Infer parameters a fixed model

Posterior distribution

$$\Pr(\Theta|\mathbf{D}) \propto \Pr(\mathbf{D}|\Theta) \Pr(\Theta) = \mathcal{L}(\Theta)\pi(\Theta)$$

 $\mathsf{Posterior} \propto \mathsf{Likelihood} \times \mathsf{Prior}$

Oscillation parameters and priors

Infer parameters a fixed model

Posterior distribution

$$\Pr(\Theta|\mathbf{D}) \propto \Pr(\mathbf{D}|\Theta) \Pr(\Theta) = \mathcal{L}(\Theta)\pi(\Theta)$$

 $\mathsf{Posterior} \propto \mathsf{Likelihood} \times \mathsf{Prior}$

Oscillation parameters and priors

• A priori invariance under flavor transformations \Rightarrow

$$\pi(s_{12}^2, c_{13}^4, s_{23}^2, \delta) = rac{1}{2\pi}$$

- Haar measure, Majorana and unphysical phases marginalized (Haba, Murayama, hep-ph/0009174)
- $\Delta m_{21}^2, \Delta m_{31}^2$, experimental nuisance params,...
- Most interesting:
 - s²₂₃
 - δ
 - mass ordering

< 注 > < 注 >

Outline

Introduction: oscillations, global fits

2 Bayesian inference

3 Results

- Posterior distributions
- Mass ordering
- s₂₃²
- CP-violation

4 Conclusions

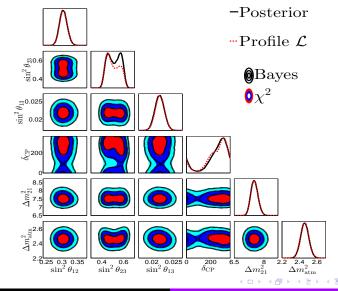
< 🗇 >

∢ ≣ ≯

< ∃ >

Posterior distributions Mass ordering s_{23}^{23} CP-violation

Posterior distributions: NO



Johannes Bergström Bayesian analysis of neutrino oscillation data

Posterior distributions Mass ordering ⁵²³ CP-violation

Mass ordering

Mass ordering

- Don't know the ordering \Rightarrow include its uncertainty
- MO Mixed ordering: Either NO or IO with equal priors
- Posterior distributions in MO = weighted average of NO and IO posteriors

-

Posterior distributions Mass ordering s_{23}^{22} CP-violation

Mass ordering

Mass ordering

- Don't know the ordering \Rightarrow include its uncertainty
- MO Mixed ordering: Either NO or IO with equal priors
- \bullet Posterior distributions in MO = weighted average of NO and IO posteriors

But data says very little

• But data says very little:

Posterior of IO \simeq 0.55, log odds \simeq 0.2

- Neither ordering preferred
- Compare with $\Delta\chi^2 = 1$
 - ${\scriptstyle \bullet}\,$ but no $\chi^2 {\rm -distribution}$

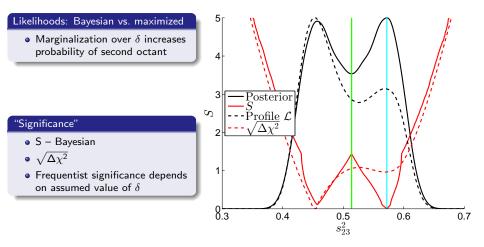
< 🗇 🕨

< ∃ >

- ∢ ⊒ →

Posterior distributions Mass ordering s_{23}^{22} CP-violation

s_{23}^2 – estimation (NO)



Posterior distributions Mass ordering \$23 CP-violation

s₂₃ – model comparison

s_{23}^2 – octant comparison

- \bullet Octants not nested no $\chi^2\text{-distribution}$ for frequentist test
- Bayesian analysis straightforward just do the integration
- Can also consider maximal mixing $s_{23}^2 = 0.5$ as a valid assumption (exact or approximate)

Posterior distributions Mass ordering \$23 CP-violation

s₂₃ – model comparison

s_{23}^2 – octant comparison

- \bullet Octants not nested no $\chi^2\text{-distribution}$ for frequentist test
- Bayesian analysis straightforward just do the integration
- Can also consider maximal mixing $s_{23}^2 = 0.5$ as a valid assumption (exact or approximate)

		NO	10
2nd octant vs. 1st	$log\mathcal{B}$	0.3	1.2
(> 0 prefers 2nd oct)	$\Delta \chi^2$	-0.9	2.0

Conclusions

Second octant weakly preferred over the first for IO

Posterior distributions Mass ordering \$23 CP-violation

s_{23}^2 – model comparison

s_{23}^2 – octant comparison

- $\bullet\,$ Octants not nested no $\chi^2\text{-distribution}$ for frequentist test
- Bayesian analysis straightforward just do the integration
- Can also consider maximal mixing $s_{23}^2 = 0.5$ as a valid assumption (exact or approximate)

		NO	10
2nd octant vs. 1st	$log\mathcal{B}$	0.3	1.2
(> 0 prefers 2nd oct)	$\Delta\chi^2$	-0.9	2.0
Non-maximal vs. Maximal	$log\mathcal{B}$	-1.4	-1.2
(> 0 prefers non-maximal)	$\Delta\chi^2$	0.9	2.0

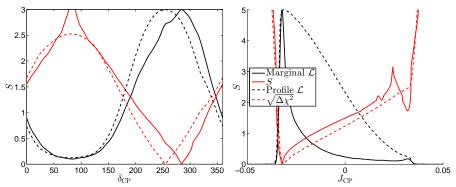
Conclusions

- Second octant weakly preferred over the first for IO
- No evidence for non-maximal mixing maximal weakly preferred
- Non-maximal punished for additional complexity but unique and small

Posterior distributions Mass ordering s_{23}^2 **CP-violation**

CP-violation – estimation

MO:



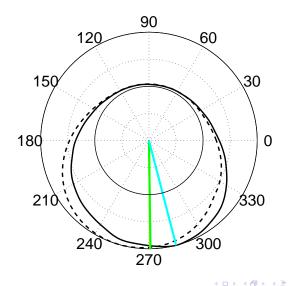
Jarlskog invariant $J_{\rm CP} = c_{12} s_{12} c_{23} s_{23} c_{13}^2 s_{13} \sin \delta$

Frequentist analysis

- Asymptotic distributions do not hold
- Statements regarding δ depends on assumed s_{23}^2

Posterior distributions Mass ordering s₂₃ CP-violation

δ – circularity



ъ

Posterior distributions Mass ordering ⁵⁷³ **CP-violation**

CP-violation - model comparison

Possbile assumptions

- $\delta = 0^{\circ}$
- $\delta = 180^\circ$
- CPV: δ free

< ∃⇒

≣ ▶

< 17 ▶

Posterior distributions Mass ordering s_{23}^{22} CP-violation

CP-violation - model comparison

Possbile assumptions

- $\delta = 0^{\circ}$
- $\delta = 180^{\circ}$
- CPV: δ free

Results

- Weak penalty for additional parameter
- ullet Bayesian analysis more powerful than normally, and than χ^2
- Compared to CPV:

	NO	10
$\delta = 0^{\circ}$	-0.1	-0.8
$\delta = 180^{\circ}$	-0.4	-0.1

- No evidence for or against CPV
- $\Delta\chi^2\simeq 1.5-3.5$

Conclusions

Conclusions

- Consistent Bayesian analysis no need for distribution of test statistic etc.
- Neither ordering preferred
- s_{23}^2 difference compared to χ^2 , but no evidence for non-maximal mixing, or any octant
- δ difference compared to χ^2 , no evidence for CP-violation
- Hopefully we will soon have better data to learn more

Thank you!

Thank you!

Johannes Bergström Bayesian analysis of neutrino oscillation data

三)

EXTRA SLIDES

Johannes Bergström Bayesian analysis of neutrino oscillation data

< ∃⇒

≣ ▶

< 17 ▶

δ – circularity

Point estimates

- Mean, median of δ not well defined depend on arbitrary choice of origin (Ex: mean of 10° and 350° is 180°. Should be 0°)
- Always need invariant measures
- Circular mean

 $\overline{\delta} = \arg \langle e^{i\delta}
angle$

- Circular median : endpoint closer to mean of the diameter that splits the probability equally
- Also applies to standard deviation, correaltions, ...

4 E b

δ – dispersion

Standard deviation

- Standard deviation also not invariant under choice of origin
- Make invariant by using $V = \langle d^2(\delta, \overline{\delta})
 angle$
- Invariant metric on circle: $d(\alpha, \beta) =$ minimum arc length, or
- Or from Euclidean embedding

$$d'(\alpha,\beta)^2 = |e^{i\alpha} - e^{i\beta}|^2 = 2(1 - \cos(\alpha - \beta))$$

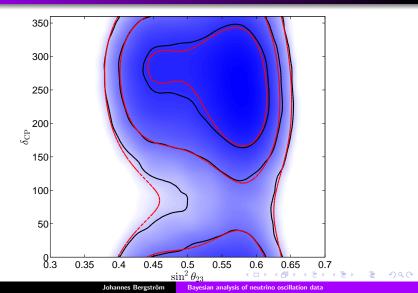
Results:

$$\sigma/\sigma' = 65^{\circ}/58^{\circ}$$
 (NO)
= $56^{\circ}/51^{\circ}$ (IO)

< ∃ >

-∢ ≣ ▶

 $s_{23}^2 - \delta$, IO



Linear correlation

- χ^2 only gives "local" correlation at best-fit
- Bayes gives global, but

$$r = \frac{\langle (x - \overline{x})(y - \overline{y}) \rangle}{\sigma_x \sigma_y}$$

Not circular-invariant

Linear correlation

- χ^2 only gives "local" correlation at best-fit
- Bayes gives global, but

$$r = \frac{\langle (x - \overline{x})(y - \overline{y}) \rangle}{\sigma_x \sigma_y}$$

Not circular-invariant

Correlation with circular variables

• Between two circular variables

$$r_{\rm cc} = \frac{\langle \sin(x-\overline{x})\sin(y-\overline{y})\rangle}{\sqrt{\langle \sin^2(x-\overline{x})\rangle \langle \sin^2(y-\overline{y})\rangle}}$$

Circular-linear

$$r_{\rm cl}^2 = \frac{r_{xc}^2 + r_{xs}^2 - 2r_{xs}r_{xc}r_{cs}}{1 - r_{cs}^2}$$

$$r_{xc} = r(x, \cos y), r_{xs} = r(x, \sin y), r_{cs} = r(\cos y, \sin y).$$

Still only sensitive to specific kind of correlation /dependence

Johannes Bergström

Bayesian analysis of neutrino oscillation data

Mutual information

• How much is learned about x by knowing y?

$$I(X,Y) = \int P(x,y) \log \frac{P(x,y)}{P(x)P(y)} dxdy$$

- Equals 0 if and only if x and y independent
- Invariant under redefinitions, boundary conditions
- For Gaussian $I = \log(1/\sqrt{1-r^2})$, define

$$r_l \equiv \sqrt{1-e^{-2l}}$$

	NO	ю	МО
$r_{\rm cc}$	-0.20	-0.15	-0.21
<i>r</i> _{cl}	0.27	0.16	0.23
rı	0.30	0.18	0.26