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Neutrino oscillations

Neutrino oscillations

Appearance/disappearance of neutrinos observed: solar, reactor, accelerator, atmospheric

Neutrino oscillations ⇒ neutrinos massive and flavours mixed

No color nor electromagnetic charge ⇒ neutrinos Majorana or Dirac particles

3 neutrinos – mixing described by unitary matrix

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e−iδ

0 1 0

−s13e iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1


only if Majorana︷ ︸︸ ︷
diag

(
e iρ, e iσ , 1

)

sij = sin θij , cij = cos θij
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Global fits

Global fits

Oscillation wavelengths 4πE/∆m2
ij

Different experiments sensitive to different sets of parameters ⇒ Global fits

s2
12 s2

23 s2
13 ∆m2

21/10−5eV2 |m2
31(32)

|/10−3eV2

0.27− 0.34 0.38− 0.64 0.019− 0.025 7.0− 8.1 2.3− 2.6

Gonzalez-Garcia, et al., arXiv:1409.5439, nu-fit.org ⇒ data used here
Fogli et al., arXiv:1312.2878

Forero et al., arXiv:1405.7540

Global fits

Large mixing, different from quarks

Some info on δ

Ordering of masses unknown:

Normal (NO): m3 > m1,m2

Inverted (IO): m3 < m1,m2
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Global fits – statistical method?

Standard likelihood/χ2/frequentist fit

Easy, commonly used, reasonably well understood

Does not obey rules of consistent inference

Depends on data that was never observed (“significance”)

Distributions of test statistics not always known

Find out through simulations, but limited computing resources

Let’s do a Bayesian one! :)

Johannes Bergström Bayesian analysis of neutrino oscillation data



Introduction: oscillations, global fits
Bayesian inference

Results
Conclusions

Global fits – statistical method?

Standard likelihood/χ2/frequentist fit

Easy, commonly used, reasonably well understood

Does not obey rules of consistent inference

Depends on data that was never observed (“significance”)

Distributions of test statistics not always known

Find out through simulations, but limited computing resources

Let’s do a Bayesian one! :)

Johannes Bergström Bayesian analysis of neutrino oscillation data



Introduction: oscillations, global fits
Bayesian inference

Results
Conclusions

Global fits – statistical method?

Standard likelihood/χ2/frequentist fit

Easy, commonly used, reasonably well understood

Does not obey rules of consistent inference

Depends on data that was never observed (“significance”)

Distributions of test statistics not always known

Find out through simulations, but limited computing resources

Let’s do a Bayesian one! :)

Johannes Bergström Bayesian analysis of neutrino oscillation data



Introduction: oscillations, global fits
Bayesian inference

Results
Conclusions

Outline

1 Introduction: oscillations, global fits

2 Bayesian inference

3 Results

Posterior distributions

Mass ordering

s2
23

CP-violation

4 Conclusions

Johannes Bergström Bayesian analysis of neutrino oscillation data



Introduction: oscillations, global fits
Bayesian inference

Results
Conclusions

Bayesian inference

Bayesian inference

Proposition A associated with probability (plausibility) Pr(A)

Related by laws of probability theory

Update odds using data

Pr(A|D)

Pr(B|D)
=

Pr(D|A)

Pr(D|B)

Pr(A)

Pr(B)

Posterior odds = Likelihood ratio (Bayes factor) · Prior odds

Usually prior odds = 1

Evidence

Model likelihood – evidence

Z =

∫
L(Θ)π(Θ)dNΘ

Model likelihood = Average likelihood of model parameters

Evidence balances quality of fit and model complexity – can favour simpler model
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Bayesian inference

Bayesian inference

Proposition A associated with probability (plausibility) Pr(A)

Related by laws of probability theory

Update odds using data

Pr(A|D)

Pr(B|D)
=

Pr(D|A)

Pr(D|B)

Pr(A)

Pr(B)

Posterior odds = Likelihood ratio (Bayes factor) · Prior odds

Usually prior odds = 1

Jeffreys scale: translation into English

| log(odds)| Interpretation

< 1.0 Inconclusive

1.0 Weak evidence

2.5 Moderate evidence

5.0 Strong evidence
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Oscillation parameters and priors

Infer parameters a fixed model

Posterior distribution
Pr(Θ|D) ∝ Pr(D|Θ) Pr(Θ) = L(Θ)π(Θ)

Posterior ∝ Likelihood× Prior

Oscillation parameters and priors

A priori invariance under flavor transformations ⇒

π(s2
12, c

4
13, s

2
23, δ) =

1

2π

Haar measure, Majorana and unphysical phases marginalized (Haba, Murayama, hep-ph/0009174)

∆m2
21,∆m2

31, experimental nuisance params,. . .

Most interesting:

s2
23
δ
mass ordering
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Posterior distributions: NO
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Mass ordering

Mass ordering

Don’t know the ordering ⇒ include its uncertainty

MO – Mixed ordering: Either NO or IO with equal priors

Posterior distributions in MO = weighted average of NO and IO posteriors

But data says very little

But data says very little:

Posterior of IO ' 0.55, log odds ' 0.2

Neither ordering preferred

Compare with ∆χ2 = 1

but no χ2-distribution
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s2
23 – estimation (NO)

Likelihoods: Bayesian vs. maximized

Marginalization over δ increases
probability of second octant

“Significance”

S – Bayesian√
∆χ2

Frequentist significance depends
on assumed value of δ

s2
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s2
23 – model comparison

s2
23 – octant comparison

Octants not nested – no χ2-distribution for frequentist test

Bayesian analysis straightforward – just do the integration

Can also consider maximal mixing s2
23 = 0.5 as a valid assumption (exact or approximate)

NO IO

2nd octant vs. 1st logB 0.3 1.2

(> 0 prefers 2nd oct) ∆χ2 −0.9 2.0

Non-maximal vs. Maximal logB −1.4 −1.2

(> 0 prefers non-maximal) ∆χ2 0.9 2.0

Conclusions

Second octant weakly preferred over the first for IO

No evidence for non-maximal mixing – maximal weakly preferred

Non-maximal punished for additional complexity – but unique and small
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CP-violation – estimation

MO:

δCP

S
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Jarlskog invariant JCP = c12s12c23s23c2
13s13 sin δ

Frequentist analysis

Asymptotic distributions do not hold

Statements regarding δ depends on assumed s2
23
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δ – circularity
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CP-violation - model comparison

Possbile assumptions

δ = 0◦

δ = 180◦

CPV: δ free

Results

Weak penalty for additional parameter

Bayesian analysis more powerful than normally, and than χ2

Compared to CPV:

NO IO

δ = 0◦ −0.1 −0.8

δ = 180◦ −0.4 −0.1

No evidence for or against CPV

∆χ2 ' 1.5− 3.5
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Conclusions

Conclusions

Consistent Bayesian analysis – no need for distribution of test statistic etc.

Neither ordering preferred

s2
23 – difference compared to χ2, but no evidence for non-maximal mixing, or any octant

δ – difference compared to χ2, no evidence for CP-violation

Hopefully we will soon have better data to learn more

Johannes Bergström Bayesian analysis of neutrino oscillation data
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Thank you!
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δ – circularity

Point estimates

Mean, median of δ not well defined – depend on arbitrary choice of origin

(Ex: mean of 10◦ and 350◦ is 180◦. Should be 0◦)

Always need invariant measures

Circular mean

δ = arg〈e iδ〉

Circular median : endpoint closer to mean of the diameter that splits the probability

equally

Also applies to standard deviation, correaltions, . . .

Johannes Bergström Bayesian analysis of neutrino oscillation data
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δ – dispersion

Standard deviation

Standard deviation also not invariant under choice of origin

Make invariant by using V = 〈d2(δ, δ)〉

Invariant metric on circle: d(α, β) = minimum arc length, or

Or from Euclidean embedding

d ′(α, β)2 = |eiα − eiβ |2 = 2(1− cos(α− β))

Results:

σ/σ′ = 65◦/58◦ (NO)

= 56◦/51◦ (IO)

Johannes Bergström Bayesian analysis of neutrino oscillation data
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s2
23–δ correlation

Linear correlation

χ2 only gives “local” correlation at best-fit

Bayes gives global, but

r =
〈(x − x)(y − y)〉

σxσy

Not circular-invariant

Correlation with circular variables

Between two circular variables

rcc =
〈sin(x − x) sin(y − y)〉√
〈sin2(x − x)〉〈sin2(y − y)〉

Circular-linear

r2
cl =

r2
xc + r2

xs − 2rxs rxc rcs

1− r2
cs

rxc = r(x , cos y), rxs = r(x , sin y), rcs = r(cos y , sin y).

Still only sensitive to specific kind of correlation/dependence

Johannes Bergström Bayesian analysis of neutrino oscillation data



Introduction: oscillations, global fits
Bayesian inference

Results
Conclusions

s2
23–δ correlation

Linear correlation

χ2 only gives “local” correlation at best-fit

Bayes gives global, but

r =
〈(x − x)(y − y)〉

σxσy

Not circular-invariant

Correlation with circular variables

Between two circular variables

rcc =
〈sin(x − x) sin(y − y)〉√
〈sin2(x − x)〉〈sin2(y − y)〉

Circular-linear

r2
cl =

r2
xc + r2

xs − 2rxs rxc rcs

1− r2
cs

rxc = r(x , cos y), rxs = r(x , sin y), rcs = r(cos y , sin y).

Still only sensitive to specific kind of correlation/dependence
Johannes Bergström Bayesian analysis of neutrino oscillation data



Introduction: oscillations, global fits
Bayesian inference

Results
Conclusions

s2
23–δ correlation

Mutual information

How much is learned about x by knowing y?

I (X ,Y ) =

∫
P(x , y) log

P(x , y)

P(x)P(y)
dxdy

Equals 0 if and only if x and y independent

Invariant under redefinitions, boundary conditions

For Gaussian I = log(1/
√

1− r2), define

rI ≡
√

1− e−2I

NO IO MO

rcc −0.20 −0.15 −0.21

rcl 0.27 0.16 0.23

rI 0.30 0.18 0.26

Johannes Bergström Bayesian analysis of neutrino oscillation data
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