On the (light) CP-odd Higgs

Olcyr Sumensari^{1,2}

In collaboration with Damir Becirevic 1 hep-ph/1506.xxxx

¹LPT - Orsay

²Universidade de São Paulo

June 22, 2015

Olcyr Sumensari (USP / LPT - Orsay)

On the (light) CP-odd Higgs

June 22, 2015 1 / 13

Motivations

- So far no clear signal of NP has been found at the LHC.
- Understanding the spectrum of scalars beyond the SM is crucial.
- Possibility of light CP-odd Higgs A:

$m_A < m_h \approx 125~{ m GeV}.$

• DM portal: mediating interactions between SM and DM fermions.

Coy Mediator: [Boehm et al. 1401.6458] [Arina et al. 1409.0007]

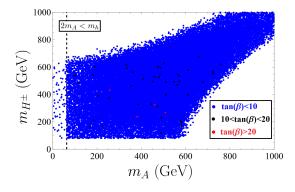
- So far no clear signal of NP has been found at the LHC.
- Understanding the spectrum of scalars beyond the SM is crucial.
- Possibility of light CP-odd Higgs A:

$m_A < m_h \approx 125~{ m GeV}.$

• DM portal: mediating interactions between SM and DM fermions. Coy Mediator: [Boehm et al. 1401.6458]

[Arina et al. 1409.0007]

Can a light CP-odd Higgs be accommodated in 2HDM?

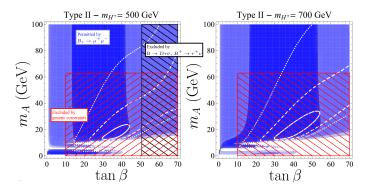

What can we learn from *low-energy processes*?

Results I. Generic Constraints

- We studied the 2HDM scenarios with light CP-odd Higgs $(m_A < m_h)$.
- Using the general theory constraints ⇒ light CP-odd is perfectly **plausible**.

Results I. Generic Constraints

- We studied the 2HDM scenarios with light CP-odd Higgs $(m_A < m_h)$.
- Using the general theory constraints ⇒ light CP-odd is perfectly plausible.

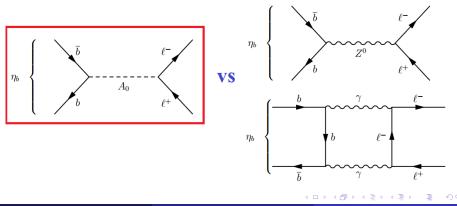


Results II. Flavor Constraints

- We separated the situation with $m_A < m_h/2$ from $m_A > m_h/2$.
- Former case: important possible signatures in $\Upsilon \rightarrow \eta_b \gamma$ (mixing $A \eta_b$).
- Major constraint from $B_s \to \mu^+ \mu^-$: H^\pm cannot be dissociated from A .
- $B \to D\tau\nu$ and $B^+ \to \tau^+\nu$ useful constraint for $m_{H^{\pm}} \lesssim 500$ GeV.

Results II. Flavor Constraints

- We separated the situation with $m_A < m_h/2$ from $m_A > m_h/2$.
- Former case: important possible signatures in $\Upsilon \rightarrow \eta_b \gamma$ (mixing $A \eta_b$).
- Major constraint from $B_s \to \mu^+ \mu^-$: H^\pm cannot be dissociated from A .
- $B \rightarrow D\tau\nu$ and $B^+ \rightarrow \tau^+\nu$ useful constraint for $m_{H^{\pm}} \lesssim 500$ GeV.



• $(g-2)_{\mu}$ is not a reliable constraint (white lines) ...

Future Experimental possibilities

Large enhancements can be checked in the decays $\eta_{b,c} \rightarrow \ell^+ \ell^- (J^P = 0^-)$:

- Process suppressed in the SM \Rightarrow We are sensitive to New Physics.
- New Physics appears at tree-level.
- Non-perturbative QCD effects are under control (Lattice QCD).

There is still room for a light CP-odd *A* in minimal models (such as 2HDM)!

The situation can change with

- More precise measurements of $B_s \rightarrow \mu^- \mu^+$ at LHCb.
- Search for $\eta_{b,c} \rightarrow \ell^- \ell^+$ in Belle-II, LHCb.

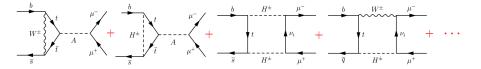
Thank you! See poster for more!

Back-up Slides

We consider a 2HDM with a (softly broken) Z_2 symmetry:

- Rich spectrum: 3 neutral scalars (h, H, A) and one charged (H^{\pm}) .
- \mathbb{Z}_2 symmetry needed to forbid tree-level FCNC \Rightarrow 4 different realizations (types *I* and *II*, Lepton-Specific and Flipped).

Our analysis imposes


- General theoretical limits on the 2HDM spectrum (eg. unitarity).
- The requirement that *h* couplings are not far from SM (\Rightarrow small value of $\Gamma(h \rightarrow AA)$).
- Flavor constraints.

Flavor observables can provide strong constraints:

•
$$\Upsilon o \gamma \eta_b$$
, through mixing $A \rightsquigarrow \eta_b$.

• $B_s \rightarrow \mu^- \mu^+$. Pich et al. 1404.5865

New (scalar) contributions:

 \Rightarrow Impossible to dissociate A and H^{\pm} (gauge invariance).

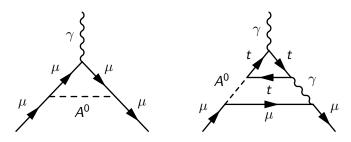
Flavor observables can provide strong constraints:

•
$$\Upsilon \to \eta_b \gamma$$
 and $\Upsilon \to \gamma \tau^- \tau^+$.

• $B_s \rightarrow \mu^- \mu^+$. Pich et al. 1404.5865

In our framework, the relevant contributions are:

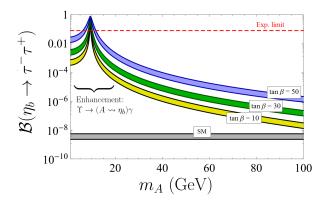
$$\mathcal{B}(B_s o \mu^- \mu^+) \propto |C_S|^2 + \left| \frac{C_P}{m_{B_s}^2} + \frac{2m_\mu m_b}{m_{B_s}^2} C_{10} \right|^2,$$


where C_i are Wilson coefficients of

$$\mathcal{O}_P \propto \underbrace{(\bar{s}P_R b)(\bar{\ell}\gamma_\mu\gamma_5\ell)}_{\text{New contribution}},$$

 $\mathcal{O}_{10} \propto (\bar{s}\gamma^{\mu}P_Rb)(\bar{\ell}\gamma_5\ell), \quad \dots$ Dominant in the SN

 $(g - 2)_{\mu}$


- We don't know if the anomaly is due to NP.
- Problematic cancellation between 1 and 2-loop diagrams (Barr-Zee) ⇒ A more systematic study is needed.

Future Experimental possibilities

Large enhancements due to pseudo-scalar bosons can be checked in the decays $\eta_{b,c} \rightarrow \ell^+ \ell^- (J^P = 0^-)$ and similar modes.

For 2HDM-II,

Generic Constraints

Scalar potential:

$$\begin{split} V(\Phi_1, \Phi_2) &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 \Phi_1^{\dagger} \Phi_1 \Phi_2^{\dagger} \Phi_2 + \lambda_4 \Phi_1^{\dagger} \Phi_2 \Phi_2^{\dagger} \Phi_1 + \frac{\lambda_5}{2} \left[(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2 \right] \end{split}$$

• Limits on $\Gamma(h \to AA) \ll \Gamma_h^{
m SM}$ for $m_A < m_h/2$:

$$ert g_{hAA} ert \ll v \Rightarrow M^2 \lesssim m_A^2 + rac{1}{2}m_h^2 \ \Rightarrow M^2 < m_h^2.$$

• For large tan β :

$$|\lambda_i| \leq 4\pi \Rightarrow m_h^2 \lesssim M^2 \lesssim m_H^2$$
.

< □ > < 凸

 \Rightarrow Impossible to have small $\Gamma(h \rightarrow AA)$ with $m_A < m_h/2$ and $\tan \beta \gtrsim 10$.