# Current Status and Future Prospects of Neutrino Oscillations

Yifang Wang
Institute of high energy physics
Invisibles 15, June 24, 2015

#### **Neutrino Oscillation**

If the neutrino mass eigenstate is different from that of the weak interaction, neutrinos can oscillate: from one type to another during the flight:

$$\begin{array}{lll} \textbf{Oscillation matrix} & \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} \; = \; \begin{pmatrix} \mathbf{V_{e1}} & \mathbf{V_{e2}} & \mathbf{V_{e3}} \\ \mathbf{V_{\mu 1}} & \mathbf{V_{\mu 2}} & \mathbf{V_{\mu 3}} \\ \mathbf{V_{\tau 1}} & \mathbf{V_{\tau 2}} & \mathbf{V_{\tau 3}} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- $\triangleright$  Known parameters:  $\theta_{23}$ ,  $\theta_{12}$ ,  $|\Delta M^2_{23}|$ ,  $\Delta M^2_{12}$
- $\triangleright$  Recent progress:  $\theta_{13}$
- $\triangleright$  Unknown parameters: mass hierarchy( $\Delta M^2_{23}$ ), CP phase δ

## <u>Atmospheric Neutrinos</u>

- Determination of  $\theta_{23}$  &  $|\Delta M^2_{23}|$
- **♦ Current experiment: SuperK, Icecube** 
  - $\Rightarrow$  Still improves  $\theta_{23} \& |\Delta M^2_{23}|$
  - **⇒** 3 flavor analysis for
    - $\checkmark \theta_{23}$  octant
    - ✓ mass hierarchy
    - ✓ CP phase
- Future experiments
  - ⇒ INO, PINGU/Icecube, HyperK



#### Three Flavor analysis: Sub-leading Effects



- Thanks to the huge statistics and large  $\theta_{13}$ , we can look for:
  - Mass hierarchy: enhanced high E upward going  $v_e$  due to the matter effect
  - Octant of oscillation: enhanced low energy  $v_e$  due to the solar term
  - CP phase  $\delta$ : interference between these two

#### Three Flavor analysis: Sub-leading Effects



- Thanks to the huge statistics and large  $\theta_{13}$ , we can look for:
  - Mass hierarchy: enhanced high E upward going  $v_e$  due to the matter effect
  - Octant of oscillation: enhanced low energy  $v_e$  due to the solar term
  - CP phase  $\delta$ : interference between these two

## Fitting Results: SuperK + T2K

R. Wendall@neutrino2014



$$\chi^2_{IH} - \chi^2_{NH} = -1.2$$
 (-0.9 SK only )

■ CP Conservation ( $\sin\delta_{cp}$  = 0 ) allowed at (at least) 90% C.L. for both hierarchies

Same detector, generator and reconstruction: easy for systematic error correlation MINOS is not included yet

## IceCube/DeepCore

- IceCube: 5160 PMTs over 1 km³, DeepCore: 600 PMTs over 0.02 km³
- Sensors separation: 7-70 m, Light yield: a few p.e. @ 10 GeV
- Cosmic- $\mu$  rate is 10<sup>6</sup> higher than  $\nu$
- Already better than SuperK!

J.P. Yáňez@neutrino2014





## Future experiment: INO

- ➤ INO(India-based Neutrino Observatory): 50kt magnetized iron plates interleaved with RPCs: Sign sensitive
- ➤ Construction started, operational: 2018
- Sensitivity to mass hierarchy: ~3σ after 10 years running







#### Future experiments: PINGU(& ORCA)

- A large ice Cerenkov detector with E<sub>thresh</sub> < 10 GeV</li>
  - **⇒** Add 40 strings with 20 m spacing
  - ⇒ ~ 20× photocathode density
  - **Existing IceCube as the VETO**
- **♦** Equivalent target mass: +10 Mt
- Sensitivity: ~ 3σ in ~ 3 years





D. Grant@neutrino 2014

#### **Solar neutrinos**

- Measurement of  $\theta_{12}$  &  $\Delta M^2_{21}$
- Current experiments: Borexino, SuperK
- Future experiment:
  - SNO+, XMASS, LENA, JUNO...

#### Koshio@neutrino 2014



## Confirmation of the Solar Model and the Neutrino Oscillation



- Accomplished:
  - <sup>7</sup>Be flux
  - 8B flux down to 3
     MeV
  - pep flux & limit on CNO
- Future:
  - pp neutrinos
  - CNO

#### **Future**

- Better oscillation measurements
  - Seasonal variations
  - Spectrum distortion
  - Day-night effect
- Non-standard interactions
  - Flavor changing NC
  - Sterile neutrinos
  - Mass varying neutrinos
- Solar physics:
  - Understand the stellar formation by measuring the metallicity of the Sun's core
    - Precision 8B flux
    - CNO flux

- SuperK
- Borexino
- SNO+
- XMASS
- JUNO
- HyperK
- LENA
- •

#### Reactor neutrinos

- Established  $\theta_{13}$  Oscillation
- Future: Mass hierarchy
  - ⇒ JUNO, RENO-50

#### Daya Bay





F.P. An et al., NIM. A 685(2012)78 F.P. An et al., Phys. Rev. Lett. 108, (2012) 171803, citation > 1200



#### Comparison of $\theta_{13}$ Measurements





#### Comparison of $\theta_{13}$ Measurements



Accelerator experiments assuming  $\delta_{CP}=0$ ,  $\theta_{23}=45^{\circ}$ 

#### **Double Chooz: Results and Prospect**

- Reactor rate modulation: background measurement
- nGd rate+shape analysis for far detector only

 $\sin^2(2\theta_{13})=(0.09\pm0.03)$ ( $\chi^2/\text{n.d.f.}=51.4/40$ )

#### ON OFF background model





- Near detector ready
- Expected final precision on sin<sup>2</sup>2θ<sub>13</sub>: ~
   10-15%

#### **RENO: Results and Prospects**

- ✓ Also reactor rate modulation analysis
- ✓ New results on nGd & nH rate analysis
- **✓** Shape analysis is on the way
- ✓ Reduced systematics but <sup>252</sup>Cf contamination worsened the uncertainty
- **✓** Future prospects: 7% precision
- nGd rate analysis

```
\sin^2(2 \theta_{13}) = 0.101 \pm 0.008 \text{ (stat.)} \pm 0.010 \text{ (sys.)}
```

- Data before  $^{252}$ Cf contamination: previous **0.012** (sys.)  $\rightarrow$  **0.007** (sys.)
- Data after <sup>252</sup>Cf contamination:

  → 0.018 (sys.)

nH rate analysis

```
\sin^2(2\theta_{13}) = 0.095 \pm 0.015 (stat.) \pm 0.025 (sys.)
```

## <u>Daya Bay</u>

- Detailed and precise corrections for non-linearity
- Continue to improve: reduced backgrounds and systematics
- Rate + Shape analysis for nGd events
- Rate analysis for nH events

#### Non-linearity uncertainty < 1% **Relative energy scale difference: <0.2%** Gamma calibration data Scintillator non-linearity — EH1AD1 — EH3AD1 AD relative energy scale differences 0.004— EH1AD2 - EH3AD2 — EH3AD3 — EH2AD1 — EH3AD4 — EH2AD2 0.002Best fit Data (corrected for best fit electronics non-linearity) 0.95 Single gamma source 0.002Uniform n-Gd Natrual radioactivity alpha Meas./ fit 1.02 Detector center sources -0.004Natrual radioactivity gamma 2 10 Reconstructed energy (MeV) Effective gamma energy [MeV]

#### **Recent Results**







$$\sin^2 2\theta_{13} = 0.083 + -0.018$$

- $\sin^2 2\theta_{13} = 0.084^{+0.005}_{-0.005}$  $|\Delta m^2_{ee}| = 2.44^{+0.10}_{-0.11} \times 10^{-3} \text{eV}^2$  $\chi^2/NDF = 134.7/146$
- $\Delta(\sin^2 2\theta_{13})/\sin^2 2\theta_{13} \sim 6\%$ , the best among all mixing angles
- $\Delta(\Delta M_{ee}^2)/\Delta M_{ee}^2 \sim 5\%$ , similar to that of MINOS
- nH results ~4.5σ, independent check

## **Future Prospects**

- Precision still dominated by statistics
- Continue to improve systematics
- Data taking until 2017
- Precision expected:
  - $\Rightarrow$   $\Delta(\sin^2 2\theta_{13}) \sim 0.003 \Rightarrow \sim 3\%$
  - $\Rightarrow \Delta(\Delta M_{ee}^2) \sim 0.07 \rightarrow \sim 3\%$







#### Future Experiment: JUNO

|          | Daya Bay | Huizhou | Lufeng   | Yangjiang    | Taishan      |
|----------|----------|---------|----------|--------------|--------------|
| Status   | running  | planned | approved | Construction | construction |
| power/GW | 17.4     | 17.4    | 17.4     | 17.4         | 18.4         |



## **Physics Reach**

#### Thanks to a large $\theta_{13}$

- Mass hierarchy
- Precision measurement of mixing parameters
- Supernova neutrinos
- Geoneutrinos
- Sterile neutrinos

•

|                      | Current  | Daya Bay II |
|----------------------|----------|-------------|
| $\Delta m_{12}^2$    | 3%       | 0.6%        |
| $\Delta m_{23}^2$    | 5%       | 0.6%        |
| $\sin^2 \theta_{12}$ | 5%       | 0.7%        |
| $\sin^2\theta_{23}$  | 10%      | N/A         |
| $\sin^2\theta_{13}$  | 14% → 4% | ~ 15%       |

**Detector size: 20kt** 

Energy resolution:  $3\%/\sqrt{E}$ 

Thermal power: 36 GW



For 6 years, mass hierarchy cab be determined at  $4\sigma$  level, if  $\Delta m^2_{\mu\mu}$  can be determined at 1% level

#### **Status of JUNO**

#### **Schedule:**

Civil preparation: 2013-2014

Civil construction: 2015-2017

**Detector component production: 2016-2017** 

**PMT production: 2016-2019** 

**Detector assembly & installation: 2018-2019** 

Filling & data taking: 2020



#### Grounding breaking on Jan. 10, 2015





#### Reactor neutrino anomaly

- By a new flux calculation, there may exist a reactor neutrino flux deficit: 0.943  $\pm$  0.023. A  $3\sigma$  effect ?
- Confirm by other calculations and measurements
- Oscillation with sterile neutrinos? Many experiments:
  - Radioactive sources: Celand (144Ce in Kamland), Sox (51Cr in Borexino),...
  - Accelerator beams: IsoDAR, Icarus/Nessie, ...
  - Reactors: Nucifer, Stereo, Solid, SCARR, ...



#### **Accelerator Neutrinos**

• Determination of  $\theta_{23}$  and  $|\Delta M^2_{23}|$ 

C. Water@neutrino2014

- Current experiments: T2K
- Future experiment:
  - DUNE, T2HK, INO, ...
  - Neutrino factories

|    |                     | Best-fit ± FC 68% CL<br>(Am² units 10 <sup>-3</sup> eV²/c⁴) |
|----|---------------------|-------------------------------------------------------------|
| NH | $sin^2\theta_{23}$  | 0.514+0.055                                                 |
|    | $\Delta m_{32}^2$   | 2.51 ± 0.10                                                 |
| IH | $\sin^2\theta_{23}$ | 0.511 ± 0.055                                               |
|    | $\Delta m_{13}^2$   | $2.48 \pm 0.10$                                             |

#### Phys. Rev. lett. 112(2014)181801





#### T2K observation of $v_e$ Appearance



 $4.92 \pm 0.55$  events expected background 28 events observed 21.6 events expected @  $\sin^2 2\theta_{13} = 0.1$   $\delta_{CP} = 0$ ,  $\sin^2 \theta_{23} = 0.5$ 





#### **CP Phase is known?**

- Taking reactor  $\theta_{13}$  results, CP phase is constrained to be close to  $-\pi/2$
- This is a very lucky value for NOVA and other accelerator experiments
- Mass hierarchy and CP phase will be known soon?



#### **Nova: Physics Reach**

- May get mass hierarchy if lucky
- For non-maximal  $\theta_{23}$  octant determination: > 95% CL for all  $\delta_{CP}$  @  $\sin^2 2\theta_{23} = 0.97$







## LBNF/DUNE









#### Physics at DUNE

Exposure: 300 kt·W

Mass Hierarchy Sensitivity

CP Violation Sensitivity





- First phase: Two 10 kt detector with a 1.2 MW proton power
- Future: 40 kt with a 2.4 MW proton power
- Goal: 850 kt·W

#### **Future experiment: T2HK**

- 1 Mt water Cerenkov detector
- 99000 20" PMT, 20% coverage
- Octant issue:  $\Delta \sin^2 \theta_{23} < 1\%$
- Mass hierarchy: complementary to T2HK
- CP: T2HK much better







#### **Neutrino Factory**

- All channel available
  - Large  $v_e$  ( $v_e$  bar) flux
  - High energy  $v_e$  ( $v_e$  bar) flux
- Rate  $\propto E_n$  @ fixed L/E
  - Optimize event rate@L/E
  - Optimize MH
  - Optimize CP sensitivity
- Our dream machine:
  - CP phase  $\delta$  at 10-15% level

| Stored $\mu^- \rightarrow e^- v_\mu v_e$              |                                                             |  |  |  |
|-------------------------------------------------------|-------------------------------------------------------------|--|--|--|
| Disappearance                                         | Appearance                                                  |  |  |  |
| $\bar{v}_e \rightarrow \bar{v}_e \rightarrow e^+$     | $\bar{\nu}_e \rightarrow \bar{\nu}_{\mu} \rightarrow \mu^+$ |  |  |  |
|                                                       | $\bar{v}_e \rightarrow \bar{v}_\tau \rightarrow \tau^+$     |  |  |  |
| $\nu_{\mu} \rightarrow \nu_{\mu} \rightarrow \mu^{-}$ | $v_{\mu} \rightarrow v_e \rightarrow e^-$                   |  |  |  |
|                                                       | $\nu_{\mu} \rightarrow \nu_{\tau} \rightarrow \tau^{-}$     |  |  |  |



#### A New Type of Neutrino Beam for CP (MOMENT)



#### **Detector:**

- Flavor sensitive
- **Charge sensitive**
- **NC/CC** sensitive

μ decay channel (~600m) (SC solenoids or quads)

> **Neutrinos after the** target/ collection/decay:  $\sim 5 \times 10^{21} \, \text{v/year}$

Cao et al., arXiv:1401.8125

To detector (~150km)

## Why MOMENT?

- Easier and cheaper in comparison with neutrino factories, by abandoning muon cooling and acceleration stage.
- Its CW mode makes the target system slightly easier.
- The lower beam energy at ~ 300 MeV maybe optimal: free from pi0 background



#### <u>Summary</u>

- Atmospheric neutrinos are improving the precision of  $\theta_{23}$  &  $\Delta M^2_{23}$ ; sub-leading effects can be used to determine the mass hierarchy & CP phase.
- Solar neutrinos continue to provide improved measurements of  $\theta_{12}$  &  $\Delta M^2_{12}$ ; solar-related and other astrophysics issues require much larger detectors.
- Reactor neutrinos provided precise measurements of  $\theta_{13}$  &  $\Delta M^2_{13}$ ; next generation experiments can measure precisely  $\theta_{12}$  &  $\Delta M^2_{12}$  &  $\Delta M^2_{23}$ , determine the mass hierarchy, and study many astrophysics issues.
- Sterile neutrino issues will be settled by experiments at reactors and/or using radioactive sources & accelerators, sooner or later.

Mass hierarchy and CP phase will be known in a not too far future