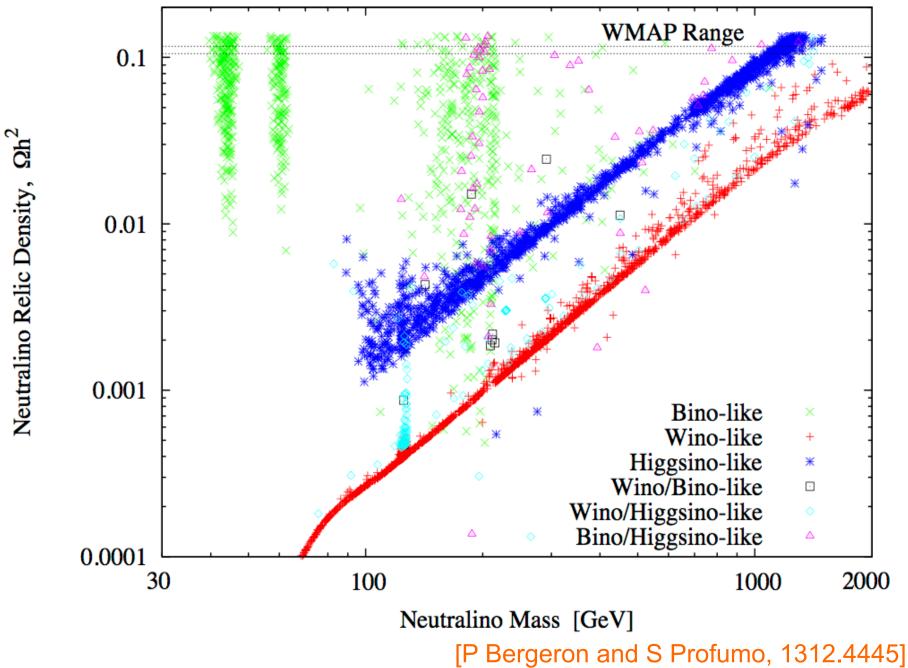
SINGLINO(-HIGGSINO) DARK MATTER AT ICECUBE AND LHC

Shoaib Munir APCTP, Pohang


Invisibles 15, Madrid June 22, 2015

based on arXiv:1504.05085, 1506.05714

- DM relic abundance in the MSSM
- The NMSSM and its neutralino sector
- Parameters space: scans and constraints
- Singlino-higgsino DM at the IceCube telescope
- O(1) GeV DM at the LHC
- Conclusions

Neutralino DM in the MSSM

The Z₃-invariant NMSSM

The MSSM superpotential not scale-invariant: `µ-problem'

 $W_{\text{MSSM}} = h_u \, \widehat{Q} \cdot \widehat{H}_u \, \widehat{U}_R^c \, + \, h_d \, \widehat{H}_d \cdot \widehat{Q} \, \widehat{D}_R^c \, + \, h_e \, \widehat{H}_d \cdot \widehat{L} \, \widehat{E}_R^c \, + \, \mu \widehat{H}_u \cdot \widehat{H}_d$ Add a Higgs singlet superfield \hat{S}

 $W_{\text{NMSSM}} = \text{MSSM Yukawa terms} + \lambda \widehat{S} \widehat{H}_u \cdot \widehat{H}_d + \frac{\kappa}{3} \widehat{S}^3$ $EWSB \rightarrow \mu_{\text{eff}} = \lambda v_s$

 $V_{\text{soft}} = m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + m_S^2 |S|^2 + \left(\lambda A_\lambda S H_u H_d + \frac{1}{3} \kappa A_\kappa S^3 + \text{h.c.}\right)$

5 new parameters (at low energy): λ , κ , A_{λ} , A_{κ} , v_S

5 neutral Higgs bosons: $H_{1,2,3}$, $A_{1,2}$ and a H^{\pm} pair

Enhancement in the tree-level mass of the SM-like Higgs boson

$$m_{H_{\rm SM}}^2 \simeq m_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta - \frac{\lambda^2 v^2}{\kappa^2} \left[\lambda - \sin 2\beta \left(\kappa + \frac{A_\lambda}{2s} \right) \right]^2$$

 $H_{\rm SM}$ can be the H_1 or the H_2 or a superposition of both!

The NMSSM neutralino sector

Fermion components of gauge and Higgs superfields mix

$$\begin{split} \widetilde{\psi}^{0} &= (-\mathrm{i}\widetilde{B}^{0}, -\mathrm{i}\widetilde{W}^{0}_{3}, \widetilde{H}^{0}_{d}, \widetilde{H}^{0}_{u}, \widetilde{S}^{0}) \\ \mathcal{L}_{\mathrm{mass}} &= -\frac{1}{2} (\widetilde{\psi}^{0})^{T} \mathcal{M}_{\widetilde{\chi}^{0}} \, \widetilde{\psi}^{0} + \mathrm{h.c.} \\ \mathcal{M}_{\widetilde{\chi}^{0}} &= \begin{pmatrix} M_{1} & 0 & -\frac{g_{1}v_{d}}{\sqrt{2}} & \frac{g_{1}v_{u}}{\sqrt{2}} & 0 \\ M_{2} & \frac{g_{2}v_{d}}{\sqrt{2}} & -\frac{g_{2}v_{u}}{\sqrt{2}} & 0 \\ 0 & -\mu_{\mathrm{eff}} & -\lambda v_{u} \\ & 0 & -\lambda v_{d} \\ & & 2\kappa s \end{pmatrix} \end{split}$$

5 neutralino mass eigenstates upon diagonalisation

$$D = \operatorname{diag}(m_{\widetilde{\chi}_i^0}) = N \mathcal{M}_{\widetilde{\chi}^0} N^T \implies \widetilde{\chi}_i^0 = N_{ij} \psi_j^0$$

R-parity conserved: lightest neutralino a dark matter candidate

$$\widetilde{\chi}_1^0 = N_{11}\widetilde{B}^0 + N_{12}\widetilde{W}_3^0 + N_{13}\widetilde{H}_d^0 + N_{14}\widetilde{H}_u^0 + N_{15}\widetilde{S}^0$$

Define singlino fraction: $Z_s = |N_{15}|^2$

NMSSM-specific solutions

Scan the NMSSM parameter space (following [H Silverwood et al., 1210.0844]) for a non-MSSM-like lightest neutralino: $Z_s \ge 0.05$

Constraints from LHC: H_{obs} mass 122 GeV – 128 GeV;

$$R_i^X \equiv \frac{\sigma(gg \to H_i) \times \text{BR}(H_i \to X)}{\sigma(gg \to h_{\text{SM}}) \times \text{BR}(h_{\text{SM}} \to X)}$$

X	$\mu^X(\text{CMS})$ [40]	$\mu^X(\text{ATLAS})$	Allowed $R_{\rm obs}^X$ range		$\begin{array}{c} R_{\rm obs}^X \text{ range} \\ H_{\rm obs} = H_2 \end{array}$
$\gamma\gamma$	1.13 ± 0.24	1.17 ± 0.27 [41]	0.89-1.37	0.91 - 1.1	0.89 - 1.12
ZZ	1.0 ± 0.29	$1.44^{+0.40}_{-0.35}$ [42]	0.71 - 1.31	0.95 - 1.05	0.88 - 1.05
WW	0.83 ± 0.21	$1.09^{+0.23}_{-0.21}$ [43]	0.71 - 1.01	0.30 - 1.00	0.00 - 1.00
au au	0.91 ± 0.28	$1.4^{+0.5}_{-0.4}$ [42]	0.63 - 1.9	0.9 - 1.01	0.63 - 1.06

•
$$2.63 \times 10^{-4} \leq BR\left(\overline{B} \to X_s\gamma\right) \leq 4.23 \times 10^{-4}$$
,

And from b-physics:

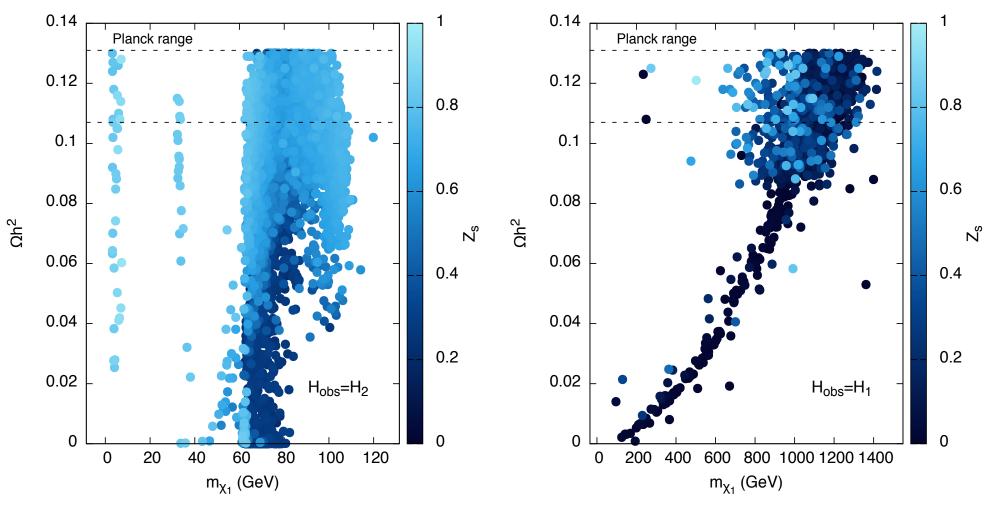
•
$$0.71 \times 10^{-4} < BR (B_u \to \tau \nu) < 2.57 \times 10^{-4}$$

• $1.3 \times 10^{-9} < BR (B_s \to \mu^+ \mu^-) < 4.5 \times 10^{-9}.$

Require consistency with PLANCK upper limit: $\Omega_{\tilde{\chi}_1^0} h^2 < 0.131$

Parameter space(s)

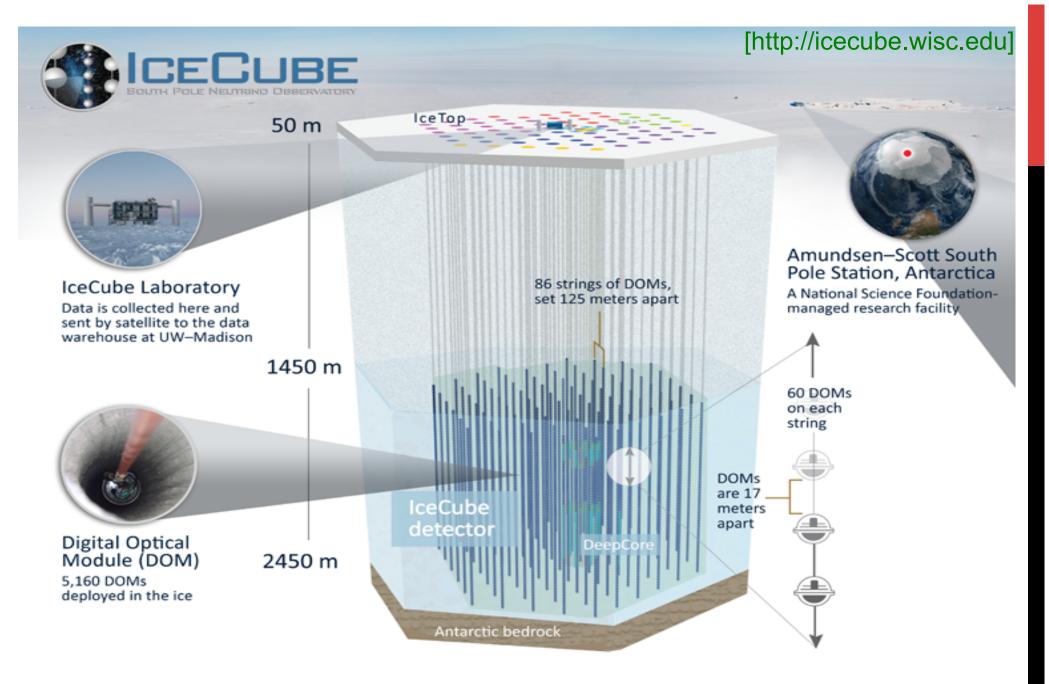
Partially GUT-constrained `C'NMSSM


$$H_{\rm obs} = H_2$$

EW-scale (p)NMSSM

$$H_{\rm obs} = H_{\rm c}$$

NNUHM parameter	NNUHM parameter Scanned range		Scanned range	
$m_0({ m GeV})$	200 - 2000	$M_{\widetilde{Q}_3} (\text{GeV})$	200 - 10000	
$m_{1/2}({ m GeV})$	100 - 1000	$M_{\widetilde{U}_3}^{\circ}({ m GeV})$	200 - 10000	
$A_0 (\text{GeV})$	-3000 - 0	$M_{\widetilde{D}_3}^{\circ 3}$ (GeV)	200 - 10000	
aneta	1 - 6	$M_{\widetilde{O}}^{D_3}({ m GeV})$	200 - 10000	
λ	0.4 - 0.7	$M_{\tilde{L}}^{Q}$ (GeV)	200 - 10000	
κ	0.01 - 0.7	M_1^L (GeV)	100 - 10000	
$\mu_{\rm eff} ({\rm GeV})$	100 - 200	M_2 (GeV)	100 - 10000	
$A_{\lambda} (\text{GeV})$	-500 - 500	$A_0 (\text{GeV})$	-25000 - 0	
$A_{\kappa} ({\rm GeV})$	-500 - 500	$\mu_{\rm eff}$ (GeV)	100 - 2000	
$M_{\widetilde{Q}} \equiv M_{\widetilde{Q}_{1,2}} = M$	$\tilde{U}_{12} = M_{\tilde{D}_{12}} ,$	$\tan \beta$	1 - 70	
$M_{\widetilde{L}} \equiv M_{\widetilde{L}_{1,2,3}}$		λ	0.001 - 0.7	
		κ	0.001 - 0.7	
$M_2 = \frac{1}{3}$	M_3 ,	$A_{\lambda} ({ m GeV})$	0 - 25000	
$A_0 \equiv A_t = A_t$		$A_{\kappa} ({\rm GeV})$	-25000 - 0	


Singlino LSP and the relic density

Interesting mass regions: < 10 GeV, $\sim 60 - 100$ GeV and $\sim 500 - 1000$ GeV where the relic density is insufficient in the MSSM

 $\chi_1 \sim 35$ GeV can explain the Fermi-LAT γ -ray excess from the galactic centre [C Cheung et al, 1406.6372, J Cao et al, 1410.3239]

ICECUBE AND PINGU

Precision IceCube Next Generation Upgrade (PINGU)

- Proposed 40-string extension of DeepCore [M Aartsen et al, 1401.2046]

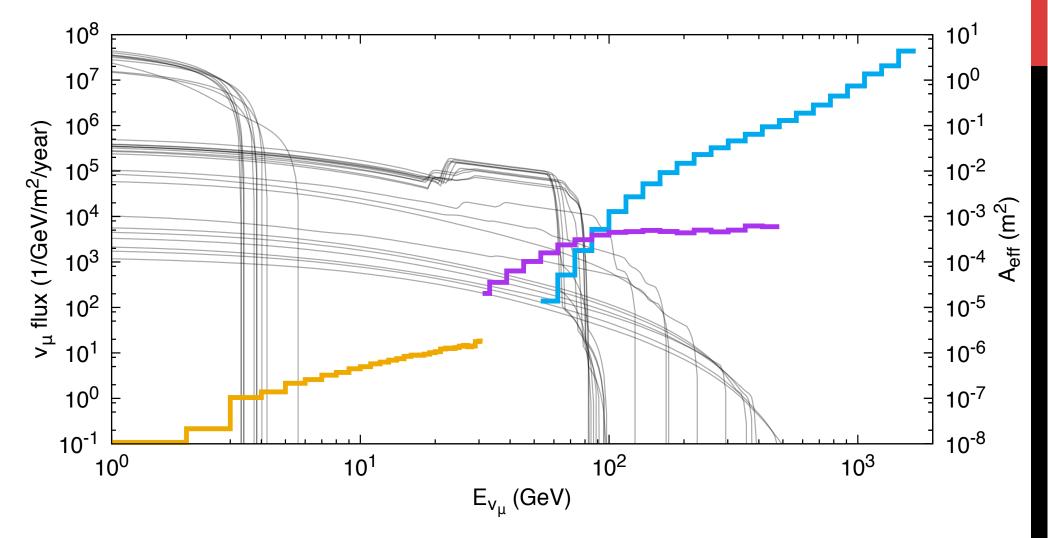
Solar neutrinos at the IceCube

DM annihilation in the Sun results in a neutrino flux at the Earth

$$\Phi = \frac{dN_{\nu_{\mu}}}{dE_{\nu_{\mu}} \, dA \, dt \, d\Omega} \,, \quad d\Omega = d\varphi \, d\theta \, \sin \theta$$

- μ (from v_{μ}) vs. e, τ : poorer energy resolution but better angular resolution

Effective area/volume: 100% detection efficiency at a detector

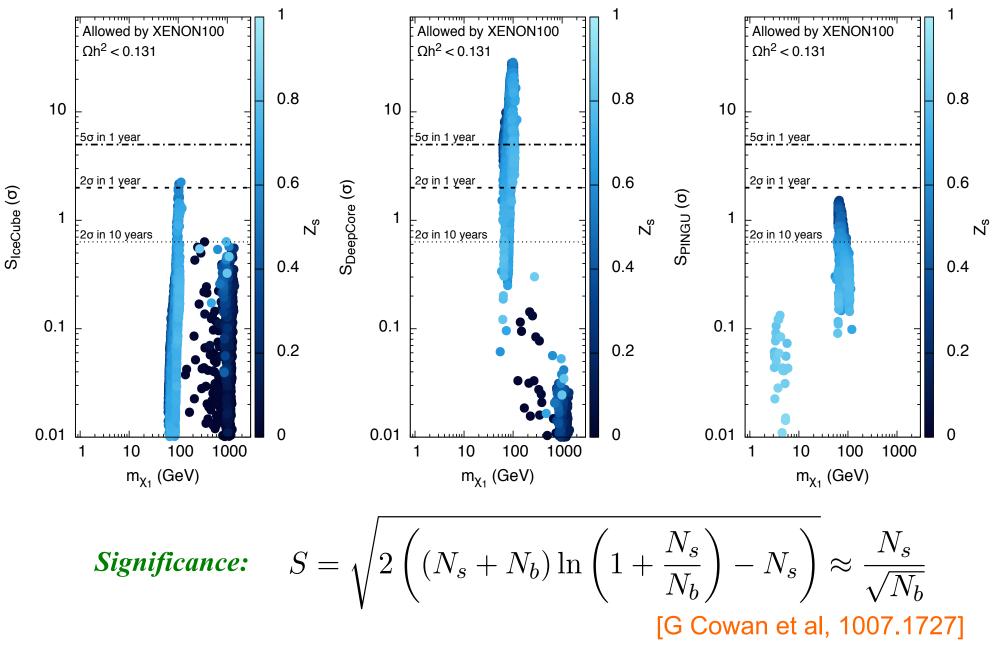

$$N_{\text{phys}} = \sum_{i}^{N_{\text{gen}}} V_{i} w_{i} \implies V_{\text{eff}} = \frac{\sum_{i}^{N_{\text{gen}}} w_{i} V_{i} \delta_{i}}{\sum_{i}^{N_{\text{gen}}} w_{i}} \Longrightarrow A_{\nu_{\mu}}^{\text{eff}} = \frac{V_{\nu_{\mu}}^{\text{eff}}(E_{\nu_{\mu}}) \sigma_{\nu N}(E_{\nu_{\mu}}) \rho_{\text{ice}} N_{A}}{A_{\text{ice}}}$$

 V_i : cylindrical volume, w_i : simulation weight, ρ_{ice} : 0.92g/cm³, A_{ice} : 18 g/mole

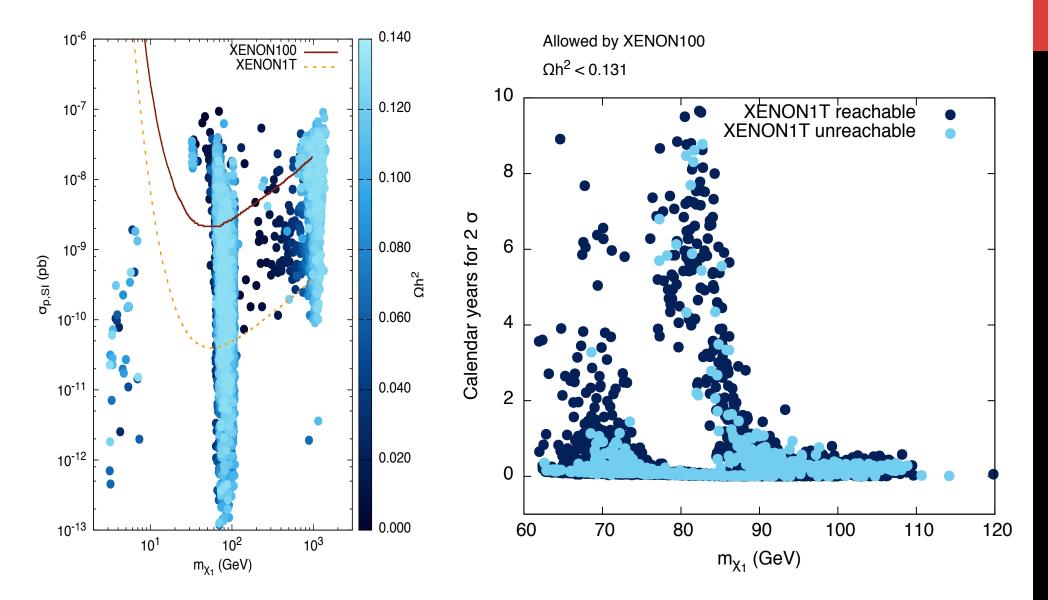
Total number of neutrino events at a detector

$$N_{\nu_{\mu}} = \int dt \int_0^\infty dE_{\nu_{\mu}} \int_0^{2\pi} d\varphi \int_0^{\theta_{\rm cut}} d\theta \sin \theta A_{\nu_{\mu}}^{\rm eff}(E_{\nu_{\mu}}) \Phi(E_{\nu_{\mu}},\theta,\varphi,t)$$

Neutrino spectra

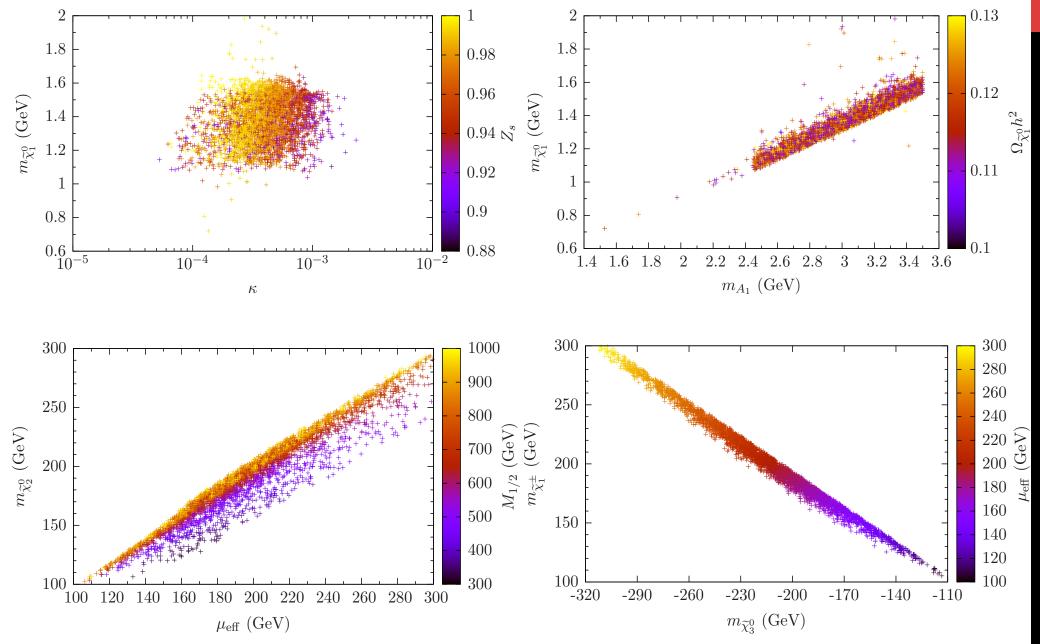


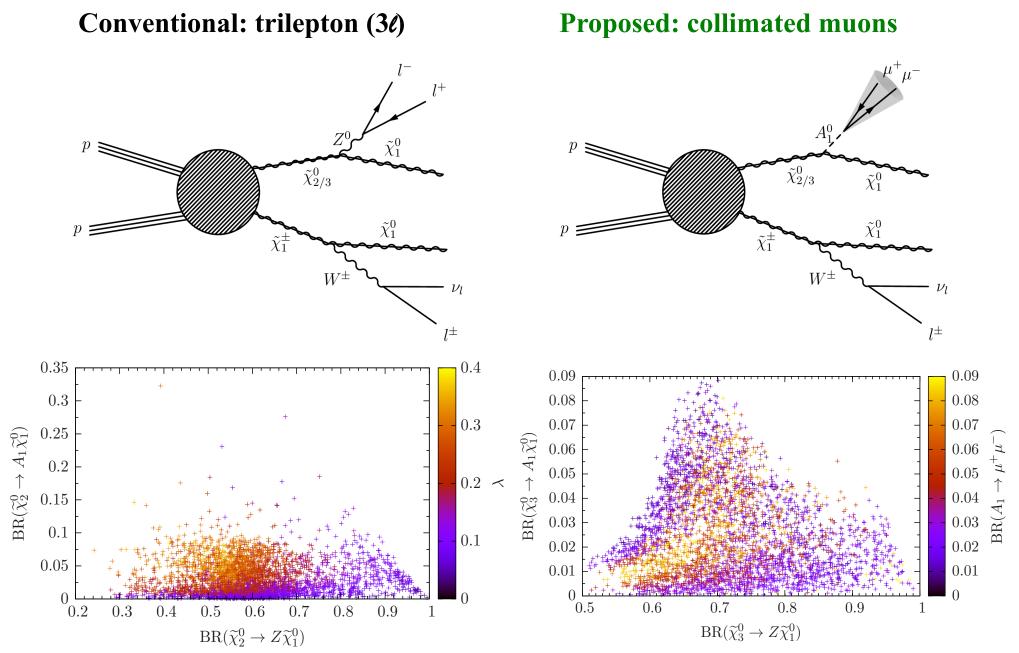
Background (calculated using NeutrinoFlux) : atmospheric – v_{μ} , μ (~1:7)


- Use only winter data for IceCube to avoid the μ background

➡ Three detectors: **PINGU**, **DeepCore**, **IceCube**

Statistical analysis (one-year data)


Years for achieving 2σ significance

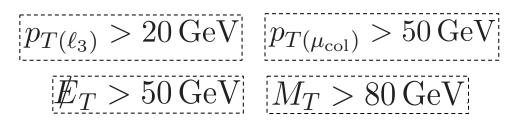

More points testable with each year of data!

14 TEV LHC

O(1 GeV) DM

Channels for probing

Constructing the μ_{col} object


- $p_T(\mu) > 10 \text{ GeV}$
- $m_{\mu\mu} < 5 \text{ GeV}$
- $I_{sum} < 3 \text{ GeV}$ (scalar sum of transverse momenta of all additional charged tracks, each with $p_T > 0.5$ GeV, within a cone with $\Delta R = 0.4$ around μ_{col})

Backgrounds:

- 3ℓ search: di-boson and tri-boson production (irreducible) and $t\bar{t}$ production (reducible)

- μ_{col} search: $W(\rightarrow \ell^{\pm} v)\gamma^*$ and $Z(\rightarrow \ell^+ \ell^-)\gamma^*$ $Wb\bar{b}$ production

Reduce the background for μ_{col} by requiring

Singlino(-higgsino) dark matter at IceCube and LHC, Shoaib Munir

Benchmark points:

	BP1	BP2
Model parameters		
$M_0({ m GeV})$	1951.1	1826.0
$M_{1/2}({ m GeV})$	892.24	929.2
$A_0^{'} ({ m GeV})$	2462.2	2626.2
$\mu_{\rm eff} ({\rm GeV})$	191.34	164.52
aneta	14.056	19.785
λ	0.0814	0.3102
κ	0.0002	0.0008
$A_{\lambda}({ m GeV})$	4080.2	3596.7
$A_{\kappa} \left(\mathrm{GeV} \right)$	-3.6681	-6.8466
Masses		
$m_{\widetilde{\chi}^0_1}$ (GeV)	1.0025	1.4081
$m_{\tilde{\chi}^0_2}$ (GeV)	189.09	170.13
$m_{\widetilde{\chi}^0_3}$ (GeV)	-201.67	-182.27
$m_{\tilde{\chi}_1^{\pm}}$ (GeV)	194.97	167.72
$m_{A_1} (\text{GeV})$	2.1776	2.9856
$m_{H_2} \ ({\rm GeV})$	124.12	125.79
Branching Ratios		
$BR(\widetilde{\chi}^0_2 \to Z\widetilde{\chi}^0_1)$	0.634	0.603
$BR(\widetilde{\chi}_2^0 \to A_1 \widetilde{\chi}_1^0)$	0.004	0.089
$BR(\widetilde{\chi}^0_3 \to Z \widetilde{\chi}^0_1)$	0.736	0.704
$BR(\widetilde{\chi}^0_3 \to A_1 \widetilde{\chi}^0_1)$	0.004	0.081
$BR(A_1 \to \mu^+ \mu^-)$	0.039	0.087
H_2 signal rates		
$R^{\gamma\gamma}$	0.998	0.901
R^{VV}	0.996	0.885
$R^{ au au}$	1.003	0.847

The 3*l* channel

Six regions defined by the ATLAS collaboration

Selection	SRnoZa	SRnoZb	SRnoZc	SRZa	SRZb	SRZc
$m_{ m SFOS}$	< 60	60 - 81.2	< 81.2 or > 101.2	81.2 - 101.2	81.2 - 101.2	81.2 - 101.2
$\not\!$	> 50	> 75	> 75	75 - 120	75 - 120	> 120
M_T	—	—	> 110	< 110	> 110	> 110
$p_{T(\ell_3)}$	> 10	> 10	> 30	> 10	> 10	> 10
SR veto	SRnoZc	SRnoZc	_	_	_	_

- For each region signal and background efficiencies obtained with CheckMATE

Background or signal	SRnoZa	SRnoZb	SRnoZc	SRZa	SRZb	SRZc
ZZ events	410	59	10	280	39	12
ZW^{\pm} events	1391	595	71	6850	661	189
$t\bar{t}$ events	1715	401	62	272	178	19
All background events	3516	1055	143	7402	878	220
BP1 signal events	12	37	19	191	134	130
BP2 signal events	20	46	18	270	144	96

The μ_{col} search channel

- Event generation with Pythia 6.4, detector simulation with DELPHES 3

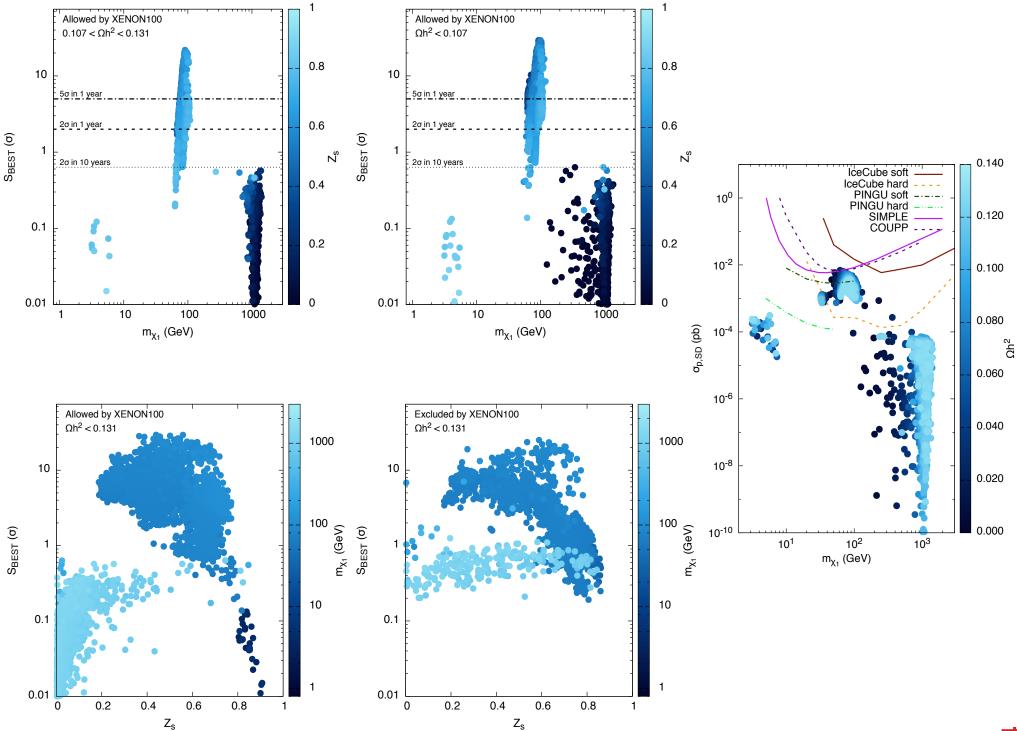
	BP1	$W\gamma^*$	$Z\gamma^*$	$W b \overline{b}$
Cross section (fb)	0.178	246.9	10.0	3770.0
Cut efficiency	0.123	2.15×10^{-4}	6×10^{-5}	1×10^{-6}
Effective cross section (fb)	0.022	0.053	0.0006	0.003
No. of events	6.6	15.9	0.18	0.9

	BP2	$W\gamma^*$	$Z\gamma^*$	$Wb\overline{b}$
Cross section (fb)	3.93	246.9	10.0	3770.0
Cut efficiency	0.050	5.3×10^{-5}	3×10^{-5}	1×10^{-6}
Effective cross section (fb)	0.197	0.013	0.0003	0.003
No. of events	59.1	3.9	0.09	0.9

Summary of results

Point	S/B in analys	is	$\mathcal{Z}(\sigma)$ in analys	sis
	3ℓ (SRZc region) $\mu_{\rm col}$		3ℓ (SRZc region)	$\mu_{ m col}$
BP1	0.591	0.42	2.7	1.2
BP2	0.436	15	2.0	27

$$\mathcal{Z} \equiv \frac{S}{\sqrt{B + (\varepsilon B)^2}}, \ \varepsilon = 0.21$$


The μ_{col} search channel gives a much larger *S/B* for BP2!

CONCLUSIONS

- The singlino-higgsino DM in the NMSSM is consistent with the PLANCK relic density measurement over some specific mass ranges where the MSSM DM is not
- The IceCube neutrino telescope has shown sensitivity to such a DM – can already exclude some points after one year of datataking
- The LHC has a very important role to play when such a DM is O(1 GeV)
- > While the trilepton channel can cover large portions of the NMSSM parameter space, our proposed μ_{col} search channel can prove crucial for some specific parameter configurations

THANK YOU!

BACKUP SLIDES

Singlino(-higgsino) dark matter at IceCube and LHC, Shoaib Munir

DEFINITIONS

$$M_T = \sqrt{2 \not\!\!\!E_T \, p_{T(\ell_3)} \left(1 - \cos \Delta \phi_{\ell_3, \not\!\!\!E_T}\right)}$$

$$\Delta R_{\mu\bar{\mu}} \equiv \sqrt{\Delta\eta^2 + \Delta\phi^2}$$