# How to quantify the compatibility of DM direct detection experiments

#### Nassim Bozorgnia

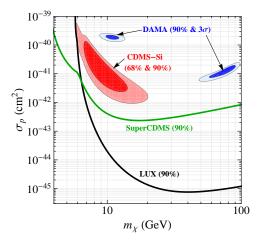
GRAPPA Institute University of Amsterdam

Based on work done with Thomas Schwetz [1410.6160]





Strong tension between hints for a signal and exclusion limits:



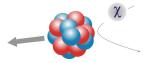
These kinds of plots assume the Standard Halo Model and a specific DM-nucleus interaction.

Very little is known about the details of the dark matter (DM) halo in the local neighborhood.  $\Rightarrow$  significant uncertainty when interpreting data from experiments.

Very little is known about the details of the dark matter (DM) halo in the local neighborhood.  $\Rightarrow$  significant uncertainty when interpreting data from experiments.

- Astrophysics independent methods: compare different experiments without making assumptions about the DM distribution. ⇒ can say *qualitatively* if a ⊕ signal is in agreement with a ⊖ result.
- ► Our aim: present methods to *quantify* the compatibility of ⊕ and ⊖ results. ⇒ calculate the probability for both experimental outcomes to happen simultaneously, assuming the DM hypothesis.

- Look for energy deposited in low-background detectors by the scattering of WIMPs in the dark halo of our galaxy.
- WIMP-nucleus collision:



Minimum WIMP speed required to produce a recoil energy E<sub>R</sub>:

$$v_m = \sqrt{rac{m_A E_R}{2 \mu_{\chi A}^2}}$$

### The differential event rate

The differential event rate (event/keV/kg/day):

$$R(E_R, t) = \frac{\rho_{\chi}}{m_{\chi}} \frac{1}{m_A} \int_{v > v_m} d^3 v \frac{d\sigma_A}{dE_R} v f_{\text{det}}(\mathbf{v}, t)$$

For the standard spin-independent and spin-dependent scattering:

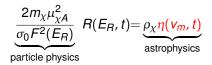
$$R(E_R, t) = \frac{\rho_{\chi}\sigma_0 F^2(E_R)}{2m_{\chi}\mu_{\chi A}^2} \eta(v_m, t)$$

where

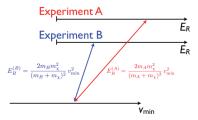
$$\eta(v_m, t) \equiv \int_{v > v_m} d^3 v \; rac{f_{
m det}(\mathbf{v}, t)}{v}$$
 halo integral

### Astrophysics independent method

Fox, Kribs, Tait, 1011.1910; Fox, Liu, Weiner, 1011.1915



 r.h.s. is independent of experiment. Compare experiments without specifying the r.h.s.



• Experimental  $\oplus$  results  $\Rightarrow$  measurement of the halo integral.

• Experimental  $\ominus$  results  $\Rightarrow$  upper bound on the halo integral.

## Upper bound on $\eta$ from $\ominus$ results

► The predicted number of events in a detected energy interval [*E*<sub>1</sub>, *E*<sub>2</sub>]:

$$N_{[E_1,E_2]}^{\text{pred}} = MT A^2 \int_0^\infty dE_R F^2(E_R) G_{[E_1,E_2]}(E_R) \tilde{\eta}(v_m)$$

### Upper bound on $\eta$ from $\ominus$ results

► The predicted number of events in a detected energy interval [*E*<sub>1</sub>, *E*<sub>2</sub>]:

$$N_{[E_1,E_2]}^{\text{pred}} = MT A^2 \int_0^\infty dE_R F^2(E_R) G_{[E_1,E_2]}(E_R) \tilde{\eta}(v_m)$$

 <sup>˜</sup>η(v<sub>m</sub>) is a decreasing function; the minimum number of events is
 obtained for a step function.

$$\mathcal{N}^{\mathrm{pred}}_{[E_1, E2]} > \mu(v_m) = MT \ A^2 \ \tilde{\eta}(v_m) \int_0^{E(v_m)} dE_R F^2(E_R) G_{[E_1, E_2]}(E_R)$$

## Upper bound on $\eta$ from $\ominus$ results

► The predicted number of events in a detected energy interval [*E*<sub>1</sub>, *E*<sub>2</sub>]:

$$N_{[E_1,E_2]}^{\text{pred}} = MT A^2 \int_0^\infty dE_R F^2(E_R) G_{[E_1,E_2]}(E_R) \tilde{\eta}(v_m)$$

 <sup>˜</sup>η(v<sub>m</sub>) is a decreasing function; the minimum number of events is
 obtained for a step function.

$$\mathcal{N}^{\mathrm{pred}}_{[E_1, E_2]} > \mu(v_m) = MT \ A^2 \ \tilde{\eta}(v_m) \int_0^{E(v_m)} dE_R F^2(E_R) G_{[E_1, E_2]}(E_R)$$

From N<sup>obs</sup> in a ⊖ result experiment, obtain an upper bound on η̃ at CL, by requiring:

$$e^{\mu}\sum_{n=0}^{N^{\rm obs}}\frac{\mu^n}{n!}=1-{\rm CL}$$

From N<sup>obs</sup> and the expected background in a ⊕ result experiment, determine the halo integral in a given bin: ⟨ñ(v<sup>i</sup><sub>m</sub>)⟩.

- From N<sup>obs</sup> and the expected background in a ⊕ result experiment, determine the halo integral in a given bin: ⟨ñ(v<sup>i</sup><sub>m</sub>)⟩.
- ▶ If the DM interpretation is correct:  $\langle \tilde{\eta}(v_m) \rangle \leq \tilde{\eta}_{bnd}(v_m)$

- From N<sup>obs</sup> and the expected background in a ⊕ result experiment, determine the halo integral in a given bin: ⟨ñ(v<sup>i</sup><sub>m</sub>)⟩.
- ▶ If the DM interpretation is correct:  $\langle \tilde{\eta}(v_m) \rangle \leq \tilde{\eta}_{bnd}(v_m)$

 $m_{\gamma} = 12 \text{ GeV}$ 12 LUX 10<sup>-5</sup> keV<sup>-1</sup> kg<sup>-1</sup> day<sup>-1</sup> 10 SuperCDMS DAMA 8 CDMS-Si 6 4 2 300 400 500 600 700 800  $v_m$  (km/s)

- From N<sup>obs</sup> and the expected background in a ⊕ result experiment, determine the halo integral in a given bin: ⟨ñ(v<sup>i</sup><sub>m</sub>)⟩.
- ▶ If the DM interpretation is correct:  $\langle \tilde{\eta}(v_m) \rangle \leq \tilde{\eta}_{bnd}(v_m)$

 $m_{\gamma} = 12 \text{ GeV}$ 12 LUX 10<sup>-5</sup> keV<sup>-1</sup> kg<sup>-1</sup> day<sup>-1</sup> Qualitative! 10 SuperCDMS DAMA 8 CDMS-Si 6 4 2 300 400 500 600 700 800  $v_m$  (km/s)

Need a quantitative way of reporting agreement or disagreement between the results of two experiments.

- Need a quantitative way of reporting agreement or disagreement between the results of two experiments.
- Consider two experiments:
  - Experiment A: excess of events
  - Experiment B: null-results
- Two methods to quantify the disagreement between A and B:
  - Method 1: using only total event numbers
  - Method 2: using in addition the energy information of the events

- >  $p_{\rm B}$ : prob. to obtain equal or less events than observed by exp. **B**.
- ► Derive an upper bound on η̃ from experiment B at CL = 1 − p<sub>B</sub>. This gives an upper bound on the predicted number of events in experiment A,

$$N_{[E_1,E_2]}^{\text{bnd},\mathbf{A}} = MT \ A^2 \ \int_0^\infty dE_R F^2(E_R) G_{[E_1,E_2]}(E_R) \ \tilde{\eta}_{\text{bnd}}^{\mathbf{B}}(v_m)$$

- >  $p_{\rm B}$ : prob. to obtain equal or less events than observed by exp. **B**.
- Derive an upper bound on η̃ from experiment B at CL = 1 p<sub>B</sub>. This gives an upper bound on the predicted number of events in experiment A,

$$N_{[E_1,E_2]}^{\text{bnd},\mathbf{A}} = MT \; A^2 \; \int_0^\infty dE_R F^2(E_R) G_{[E_1,E_2]}(E_R) \; \tilde{\eta}_{\text{bnd}}^{\mathbf{B}}(v_m)$$

Have to also include the expected number of background events:

$$\mu_{\text{bnd}}^{\mathbf{A}} = N^{\text{bnd},\mathbf{A}}_{[E_1,E_2]} + \beta_{[E_1,E_2]}^{\mathbf{A}}$$

$$N^{\mathrm{pred},\mathbf{A}}_{[E_1,E2]} \leq \mu^{\mathbf{A}}_{\mathrm{bnd}}$$

Note: N<sup>bnd,A</sup> depends on the CL that 
<sup>¬¬B</sup><sub>bnd</sub> is obtained at, and thus it depends on p<sub>B</sub>.

### Method 1 - total number of events

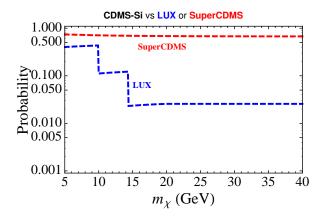
Probability to obtain N<sup>obs</sup> events or more by experiment A, given the bound:

$$\mathcal{P}_{\mathsf{A}} = \boldsymbol{e}^{\mu_{\mathrm{bnd}}}\sum_{n=N^{\mathrm{obs},\mathsf{A}}}^{\infty} rac{(\mu_{\mathrm{bnd}}^{\mathsf{A}})^n}{n!}$$

 Largest joint probability of obtaining the results of experiments A and B:

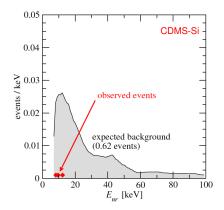
$$p_{\text{joint}} = \max_{p_{B}} \left[ p_{A}(p_{B}) p_{B} \right]$$

### Method 1 - total number of events



- ▶ p<sub>ioint</sub> of CDMS-Si and SuperCDMS ~ 70 % ⇒ compatible
- ▶ p<sub>joint</sub> of CDMS-Si and LUX for m<sub>\chi</sub> ≥ 14 GeV approaches probability for the background-only hypothesis which is 2.57%.

Take into account the energy information of the events in addition to the observed number of events.



Design a method to discriminate a signal predicting clustered events from a more broadly distributed background.

#### Define "signal length" (SL) as:

 $\Delta \equiv$  expected # events in the energy interval between the two events with the *lowest* and *highest* energy

 $\mu =$  expected # events in the full energy interval

Define "signal length" (SL) as:

 $\Delta \equiv$  expected # events in the energy interval between the two events with the *lowest* and *highest* energy

 $\mu =$ expected # events in the full energy interval

Joint probability of obtaining N<sup>obs</sup> events or more, and a signal length of size △ or smaller:

$$P_{\mathrm{SL}}(N^{\mathrm{obs}},\Delta|\mu) = e^{-\mu}\sum_{n=N^{\mathrm{obs}}}^{\infty} \frac{1}{n!} \left[ n\mu\Delta^{n-1} - (n-1)\Delta^n \right]$$

Define "signal length" (SL) as:

 $\Delta \equiv$  expected # events in the energy interval between the two events with the *lowest* and *highest* energy

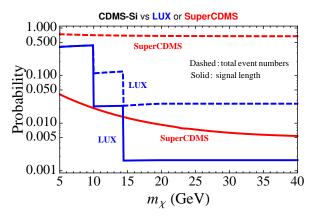
 $\mu =$ expected # events in the full energy interval

► Joint probability of obtaining N<sup>obs</sup> events or more, and a signal length of size △ or smaller:

$$\mathcal{P}_{ ext{SL}}(N^{ ext{obs}},\Delta|\mu) = e^{-\mu}\sum_{n=N^{ ext{obs}}}^{\infty}rac{1}{n!}\left[n\mu\Delta^{n-1}-(n-1)\Delta^{n}
ight]$$

- Have upper bounds on  $\mu$  and  $\Delta$  from the null-result experiment.
- Combined probability of obtaining results of experiments A & B:

$$p_{\text{joint}} = \max_{p_{\mathsf{B}}} \left[ P_{\text{SL}}^{\mathsf{A}}(p_{\mathsf{B}}) p_{\mathsf{B}} \right]$$



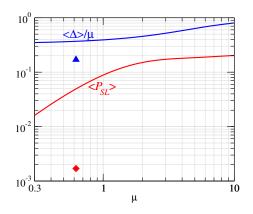
- Using energy information via SL method leads to much stronger tension.
- p<sub>joint</sub> of CDMS-Si and SuperCDMS is 4% for 5 GeV, decreasing to 0.5% for 40 GeV.
- ▶ p<sub>joint</sub> of CDMS-Si and LUX for m<sub>\chi</sub> ≥ 14 GeV is 0.17% (background-only hypothesis probability).

### Summary

- Presented a method to evaluate the joint probability for the outcomes of two potentially conflicting experiments, under the assumption that the DM hypothesis is true, but *completely independent of assumptions about the DM distribution*.
- For experiments observing an excess of events, the signal length method was developed to take into account energy information. Low joint probabilities of CDMS-Si with SuperCDMS and LUX.
- Our approach does not require Monte Carlo simulations, and is mostly based on Poisson statistics. The relevant probabilities can be analytically calculated and are relatively simple.

Additional slides

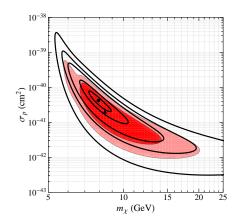
### Expectation for $P_{\rm SL}$



- ► Expect that P<sub>SL</sub> becomes small for µ ≤ 2, since it is unlikely to obtain at least 2 events.
- If for a given data the observed value of P<sub>SL</sub> is much smaller than 0.2, the experimental outcome is considered to be unlikely.

## Application to CDMS-Si data for the SHM

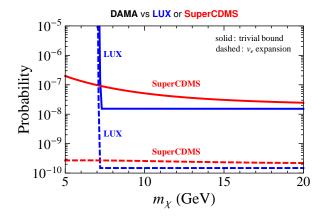
Comparison of SL and Maximum Likelihood methods:



black curves:  $P_{\rm SL} = 0.01, \\ 0.05, 0.1, 0.2, \\ 0.25$ 

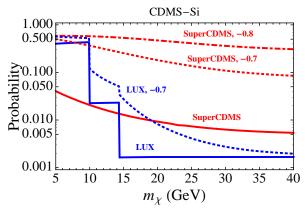
red regions: 68% and 90% CL regions

SL method provides regions where the experimental outcome is likely, while the maximum likelihood method leads to confidence regions relative to the best fit point.



## Isospin violating interactions

#### Signal length method:

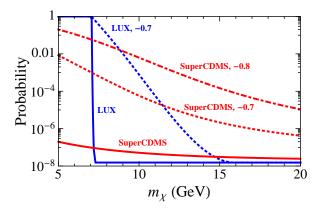


- *f<sub>n</sub>/f<sub>p</sub>* = −0.8: CDMS-Si consistent with SuperCDMS; while LUX curve coincides with isospin conserving case.
- ►  $f_n/f_p = -0.7$ :  $P_{\text{joint}}$  of **CDMS-Si** and **SuperCDMS** decreases to 18% at 20 GeV; while  $P_{\text{joint}}$  with **LUX** remains below 1% for  $m_{\chi} \ge 19$  GeV.

## Isospin violating interactions

#### Trivial bound:

DAMA



- ► Compatibility with LUX for  $f_n/f_p = -0.7$  and with SuperCDMS for -0.8 increased by many orders of magnitude for  $m_{\chi} \le 10$  GeV.
- Compatibility cannot be improved considerably with both LUX and SuperCDMS for fixed f<sub>n</sub>/f<sub>p</sub>.