Diffuse neutrinos from extragalactic supernova remnants: dominating the 100 TeV IceCube flux

Ignacio Izaguirre

25 June 2015

IceCube results(arXiv:1405.5303)

• The pp collisions of CRs in the ISM collisions produce the observed diffused high energy ν flux

- The pp collisions of CRs in the ISM collisions produce the observed diffused high energy ν flux
- We assume that the CRs are accelerated by stellar remnants

- The pp collisions of CRs in the ISM collisions produce the observed diffused high energy ν flux
- We assume that the CRs are accelerated by stellar remnants
- We consider two types of stellar remnants:

- The pp collisions of CRs in the ISM collisions produce the observed diffused high energy ν flux
- We assume that the CRs are accelerated by stellar remnants
- We consider two types of stellar remnants:
 - Supernova remnants (SNRs)

- The pp collisions of CRs in the ISM collisions produce the observed diffused high energy ν flux
- We assume that the CRs are accelerated by stellar remnants
- We consider two types of stellar remnants:
 - Supernova remnants (SNRs)
 - CR sources
 - Capable of generating ν flux up to 100–150 TeV

- The pp collisions of CRs in the ISM collisions produce the observed diffused high energy ν flux
- We assume that the CRs are accelerated by stellar remnants
- We consider two types of stellar remnants:
 - Supernova remnants (SNRs)
 - CR sources
 - ullet Capable of generating u flux up to $100-150~{
 m TeV}$
 - Hypernova remmants (HNRs)
 - Small fraction of SNRs $(1 \subseteq \%)$ with extreme energetic ejecta
 - ullet Capable of generating u flux up to 1–10 P eV

• The galactic environment surrounding the stellar remnant plays a crucial role for the ν production.

- The galactic environment surrounding the stellar remnant plays a crucial role for the ν production.
- In our calculation we have considered two type of galaxies:

- The galactic environment surrounding the stellar remnant plays a crucial role for the ν production.
- In our calculation we have considered two type of galaxies:
- Normal star formation Galaxies (NSFGs)

- The galactic environment surrounding the stellar remnant plays a crucial role for the ν production.
- In our calculation we have considered two type of galaxies:
- Normal star formation Galaxies (NSFGs)
 - Galaxies with a star formation rate (SFR) similar to the Milky Way
 - Low $n_p(n=10\text{cm}^3) \rightarrow \text{low efficiency for } \nu \text{ production}$

- The galactic environment surrounding the stellar remnant plays a crucial role for the ν production.
- In our calculation we have considered two type of galaxies:
- Normal star formation Galaxies (NSFGs)
 - Galaxies with a star formation rate (SFR) similar to the Milky Way
 - Low $n_p(n=10{
 m cm}^3) o$ low efficiency for u production
- Star burst galaxies (SBGs)

- The galactic environment surrounding the stellar remnant plays a crucial role for the ν production.
- In our calculation we have considered two type of galaxies:
- Normal star formation Galaxies (NSFGs)
 - Galaxies with a star formation rate (SFR) similar to the Milky Way
 - Low $n_p(n=10 {
 m cm}^3) o {
 m low}$ efficiency for u production
- Star burst galaxies (SBGs)
 - Old, Metal poor galaxies (z≤1-2)
 - ullet Relative rate of SBGs o (10-20)% of the NSFGs
 - Galaxies with a high SFR
 - High $n_p(n=10^2 {\rm cm}^3) \rightarrow {\rm high}$ efficiency for ν production

SNR and HNR in NSFG's+SBG's neutrino flux

SNR and HNR in NSFG's+SBG's neutrino flux

SNR and HNR in NSFG's+SBG's neutrino flux

Conclusions

- Diffuse neutrino flux might have a (dominant) stellar remnant origin
 - SNRs-HNRs in NSFGs-SBGs are plausible candidates
 - lacktriangle The SNR u flux will be dominant at $\simeq 100$ TeV energies
 - ▶ The SNR-HNR in NSFGs-SBGs ν dominated flux scenario will result in a break on the spectrum

Thank you for your attention

Back up slides

η_{π} :SBGs vs NSFGs

Figure: ν 's production efficiency (η_π) as a function of the proton energy

R_{SF} as a function of z

SBGs

HNRs in SBG neutrino flux (arXiv: 1310.1362)

Fermi γ ray flux

Fermi γ ray flux

SN ν at IceCube

