# LEPTOGENESIS IN LOW SCALE SEESAW MODELS

### **Marija Kekic**

In collaboration with:

- P. Hernandez, J. Racker, N. Rius,
- J. Lopez-Pavon

Invisibles15 Workshop, June 26, 2015







Non-zero neutrino masses

**Baryon asymmetry** 

Non-zero neutrino masses

**Baryon asymmetry** 

Bariogenesis via leptogenesis

Non-zero neutrino masses

**Baryon asymmetry** 

Bariogenesis via leptogenesis

#### **Standard Leptogenesis scenario**

Out of equilibrium decay of heavy states associated to neutrino masses (typically require large scale hard to test)

Fukugita, Yanagida, 1986;
...many works, reviewed by N. Rius

Non-zero neutrino masses

**Baryon asymmetry** 

#### Bariogenesis via leptogenesis

Standard Leptogenesis scenario
Out of equilibrium decay of heavy states associated to neutrino masses (typically require large scale hard to test)
Fukugita, Yanagida, 1986;
...many works, reviewed by N. Rius

Leptogenesis via neutrino oscillations
Out of equilibrium in production of sterile
neutrinos (natural at low-scale: testable?)
Akhmedov, Rubakov, Smirnov, 1998;
Asaka, Shaposhnikov, 2005; ...

### THE MODEL

Minimal extension to SM- adding  $N \geq 2$  right handed neutrinos

### THE MODEL

Minimal extension to SM- adding N=3 right handed neutrinos

$$\mathcal{L} = \mathcal{L}_{SM} - \sum_{\alpha,i} \bar{L}^{\alpha} Y^{\alpha i} \tilde{\Phi} \nu_R^i - \sum_{i,j=1}^3 \frac{1}{2} \bar{\nu}_R^{ic} M_N^{ij} \nu_R^j + h.c.$$

### THE MODEL

Minimal extension to SM- adding N=3 right handed neutrinos

$$\mathcal{L} = \mathcal{L}_{SM} - \sum_{\alpha,i} \bar{L}^{\alpha} Y^{\alpha i} \tilde{\Phi} \nu_R^i - \sum_{i,j=1}^3 \frac{1}{2} \bar{\nu}_R^{ic} M_N^{ij} \nu_R^j + h.c.$$

In Majorana mass basis 
$$Y \equiv V^\dagger Diag(y_1,y_2,y_3)W$$



6 CP phases, 2 of them Majorana phases

Mass range 0.1-100 GeV (decay before BBN;  $M/T \ll 1$  )

talk by J. Lopez-Pavon

• Sakharov's conditions:

Sakharov's conditions:

1. Baryon number violation

Sakharov's conditions:

#### 1. Baryon number violation

SM - **sphalerons** transfer efficiently  ${f \Delta_L} 
ightarrow {f \Delta_B}$ 



Sakharov's conditions:

1. Baryon number violation SM - sphalerons transfer efficiently  ${f \Delta_L} o {f \Delta_B}$ 



2. Loss of thermal equilibrium

Sakharov's conditions:

#### 1. Baryon number violation

SM - **sphalerons** transfer efficiently  ${f \Delta}_{
m L} 
ightarrow {f \Delta}_{
m B}$ 



#### 2. Loss of thermal equilibrium

one of the states never gets to equilibrium before EW phase transition reservoir of lepton asymmetry

- Sakharov's conditions:
- 1. Baryon number violation SM sphalerons transfer efficiently  ${f \Delta}_L o {f \Delta}_B$



one of the states never gets to equilibrium before EW phase transition reservoir of lepton asymmetry

3. C and CP violation processes

Sakharov's conditions:

#### 1. Baryon number violation

SM - **sphalerons** transfer efficiently  ${f \Delta}_{f L} 
ightarrow {f \Delta}_{f B}$ 



#### 2. Loss of thermal equilibrium

one of the states never gets to equilibrium before EW phase transition reservoir of lepton asymmetry

#### 3. C and CP violation processes

CP- odd phases (W, V matrices) + CP- even phases (oscillations)

CP asymmetries generated in the different flavours with

$$oldsymbol{\Sigma}_{
m active} oldsymbol{\Delta} oldsymbol{
m L}_{
m active} + oldsymbol{\Sigma}_{
m sterile} oldsymbol{\Delta} oldsymbol{N}_{
m sterile} = oldsymbol{0}$$

### PREVIOUS WORK

#### Akhmedov-Rubakov-Smirnov (ARS)

- estimated the asymmetry only in the sterile sector (N=3 needed)
- concluded that the right asymmetry could be generated without degeneracies

#### • Shaposhnikov, Asaka and collaborators (u MSM):

- included the transfer to the leptons
- reduced to N=2 (different CP phases than ARS)
- concluded that degeneracies were necessary

#### Drewes et al; and Shuve et al

 N=3 degeneracies can be lifted (proved for some points of phase space)

### **OUR GOAL**

- Explore systematically the N=3 case (N=2 is a subclass):
  - identify the CP invariants that are relevant
  - clarify the connection ARS/Shaposhnikov and whether degeneracies are necessary generically

### **OUR GOAL**

- Explore systematically the N=3 case (N=2 is a subclass):
  - identify the CP invariants that are relevant
  - clarify the connection ARS/Shaposhnikov and whether degeneracies are necessary generically

For all this having precise analytical predictions is a must!

### **CP INVARIANTS**

Asymmetry – CP odd

Proportional to CP invariants:

### **CP INVARIANTS**

Asymmetry – CP odd

Proportional to CP invariants:

$$\begin{split} J_W &= \text{Im}[\mathbf{W}_{\alpha \mathbf{i}}^{\star} \mathbf{W}_{\beta \mathbf{i}}^{\star} \mathbf{W}_{\alpha \mathbf{j}} \mathbf{W}_{\beta \mathbf{j}}] & \longleftarrow \\ I_1^{(2)} &= \text{Im}[\mathbf{W}_{11} \mathbf{V}_{11}^{\star} \mathbf{V}_{21} \mathbf{W}_{21}^{\star}] & \longleftarrow \\ I_1^{(3)} &= -\text{Im}[\mathbf{W}_{11} \mathbf{V}_{13}^{\star} \mathbf{V}_{23} \mathbf{W}_{23}^{\star}] & \longleftarrow \\ I_2^{(3)} &= \text{Im}[\mathbf{W}_{13} \mathbf{V}_{11}^{\star} \mathbf{V}_{21} \mathbf{W}_{23}^{\star}] & \longleftarrow \\ I_2^{(3)} &= \text{Im}[\mathbf{W}_{13} \mathbf{V}_{11}^{\star} \mathbf{V}_{21} \mathbf{W}_{23}^{\star}] & \longleftarrow \\ \end{split}$$

• Starting from Raffelt-Sigl formalism "simple" set of equations

$$\begin{split} \dot{\rho}_{+} &= -i[H_{re}, \rho_{+}] + [H_{im}, \rho_{-}] - \frac{\gamma_{N}^{a} + \gamma_{N}^{b}}{2} \{Y^{\dagger}Y, \rho_{+} - \rho_{\mathrm{FD}}\} \\ &+ i\gamma_{N}^{b} \mathrm{Im}[Y^{\dagger}\mu Y] \rho_{\mathrm{FD}} + \mathrm{i} \frac{\gamma_{\mathrm{N}}^{a}}{2} \{ \mathrm{Im}[Y^{\dagger}\mu Y], \rho_{+} \}, \\ \dot{\rho}_{-} &= -i[H_{re}, \rho_{-}] + [H_{im}, \rho_{+}] - \frac{\gamma_{N}^{a} + \gamma_{N}^{b}}{2} \{Y^{\dagger}Y, \rho_{-}\} \\ &+ \gamma_{N}^{b} \mathrm{Re}[Y^{\dagger}\mu Y] \rho_{\mathrm{FD}} + \frac{\gamma_{\mathrm{N}}^{a}}{2} \{ \mathrm{Re}[Y^{\dagger}\mu Y], \rho_{-} \}, \\ \dot{\mu}_{\alpha} &= -\mu_{\alpha} (\gamma_{\nu}^{b} \mathrm{Tr}[YY^{\dagger}I_{\alpha}] + \frac{\gamma_{\nu}^{a}}{\rho_{\mathrm{FD}}} \mathrm{Tr}[\mathrm{Re}[Y^{\dagger}I_{\alpha}Y], \rho_{+}]) \\ &+ \frac{\gamma_{\nu}^{a} + \gamma_{\nu}^{b}}{\rho_{FD}} \mathrm{Tr}[\mathrm{Re}[YI_{\alpha}Y]\rho_{-} + \mathrm{i} \mathrm{Im}[Y^{\dagger}I_{\alpha}Y]\rho_{+}] \\ &+ \frac{\gamma_{\nu}^{a} + \gamma_{\nu}^{b}}{\rho_{FD}} \mathrm{Tr}[\mathrm{Re}[YI_{\alpha}Y]\rho_{-} + \mathrm{i} \mathrm{Im}[Y^{\dagger}I_{\alpha}Y]\rho_{+}] \end{split}$$

• Starting from Raffelt-Sigl formalism "simple" set of equations

$$\dot{\rho}_{+} = -i[H_{re}, \rho_{+}] + [H_{im}, \rho_{-}] - \frac{\gamma_{N}^{a} + \gamma_{N}^{b}}{2} \{Y^{\dagger}Y, \rho_{+} - \rho_{FD}\}$$

$$+i\gamma_{N}^{b} \operatorname{Im}[Y^{\dagger}\mu Y] \rho_{FD} + i\frac{\gamma_{N}^{a}}{2} \operatorname{Im}[Y^{\dagger}\mu Y], \rho_{+}\},$$

$$\dot{\rho}_{-} = -i[H_{re}, \rho_{-}] + [H_{N}, \rho_{+}] - \frac{\gamma_{N}^{a} + \gamma_{N}^{b}}{2} \{Y^{\dagger}Y, \rho_{-}\}$$

$$+\gamma_{N}^{b} \operatorname{Re}[Y^{\dagger}\mu Y] \rho_{FD} + \frac{\gamma_{N}^{a}}{2} \{\operatorname{Re}[Y^{\dagger}\mu Y], \rho_{-}\},$$

$$\dot{\mu}_{\alpha} = -\frac{\gamma_{N}^{a} + \gamma_{N}^{b}}{2} \operatorname{Tr}[YY^{\dagger}I_{\alpha}] + \frac{\gamma_{\nu}^{a}}{\rho_{FD}} \operatorname{Tr}[\operatorname{Re}[Y^{\dagger}I_{\alpha}Y], \rho_{+}])$$

$$+ \frac{\gamma_{\nu}^{a} + \gamma_{\nu}^{b}}{\rho_{FD}} \operatorname{Tr}[\operatorname{Re}[YI_{\alpha}Y]\rho_{-} + i \operatorname{Im}[Y^{\dagger}I_{\alpha}Y]\rho_{+}]$$

$$06/26/15}$$

$$+ \frac{\gamma_{N}^{a} + \gamma_{\nu}^{b}}{\rho_{FD}} \operatorname{Tr}[\operatorname{Re}[YI_{\alpha}Y]\rho_{-} + i \operatorname{Im}[Y^{\dagger}I_{\alpha}Y]\rho_{+}]$$

• IDEA - perturbing in the mixing!



- IDEA perturbing in the mixing!
- Neglecting non-linear effects
- Average momentum approximation



- IDEA perturbing in the mixing!
- Neglecting non-linear effects
- Average momentum approximation





$$I_{CP} = I_1^{(2)}, I_1^{(3)}, I_2^{(3)}, J_W$$

functions of sterile neutrino mass and Yukawa parameters

- IDEA perturbing in the mixing!
- Neglecting non-linear effects
- Average momentum approximation





$$I_{CP} = I_1^{(2)}, I_1^{(3)}, I_2^{(3)}, J_W$$

functions of sterile neutrino mass and Yukawa parameters

valid in the fast collision regime  $t > \gamma_i^{-1}$ 

### NUMERICAL CHECK

 We evaluate equations numerically and compare with our analytic solution

### NUMERICAL CHECK

• 
$$A_{I_1^{(2)}}(t)$$

• 
$$A_{I_1^{(3)}}(t)$$





### NUMERICAL CHECK

$$\bullet \ A_{I_3^{(2)}}(t)$$

 $\bullet A_{J_W}(t)$ 





### **WORK IN PROGRESS**

- Needed full parameter scan
- Result soon to be on arxiv!

### **WORK IN PROGRESS**

- Needed full parameter scan
- Result soon to be on arxiv!

### Thank you!

# BACKUP SLIDES

### SETUP

- Mass range 0.1-100 GeV (decay before BBN)
- The Majorana nature is irrelevant since  $M/T \ll 1$
- The sterile neutrino production out of equilibrium
- ullet The yukawa couplings are small and  $\,y_3\ll y_1,y_2\,$
- Other particles in kinetic equilibrium  $ho_x = e^{\mu_x/T} 
  ho_{eq}$
- Include only chemical potential of the lepton doublet

$$(A) \qquad (B) \qquad (C)$$

$$N_{I} \qquad L_{\alpha} \qquad N_{I} \qquad L_{\alpha} \qquad N_{I}$$

$$Q_{L} \qquad t_{R} \qquad \bar{t}_{R} \qquad \bar{Q}_{L} \qquad \bar{L}_{\alpha}$$

$$\gamma_N^b = 2\gamma_N^a = 2\gamma_n u^b = 4\gamma_\nu^a = \frac{3}{16\pi^3} \frac{y_t^2 T^2}{k_0}$$
$$k_0^{-1} = \frac{\int dk k \rho_{eq}(k)}{\int dk k^2 \rho_{eq}(k)} \simeq \frac{1}{2T}$$