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LSND anomaly

LSND anomaly

ν̄µ ν̄e
L ' 30m

E ' 20− 60 MeV

∆m2
23L

E � 1 no flavor change expected

sterile neutrino ∆m2 ∼ 1eV 2

appearnce-disapearance tension Cosmology
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LSND anomaly

LSND anomaly

Quantum Decoherence has been proposed as an alternative explanation to
LSND anomaly

G. Barenboim and N. E. Mavromatos, JHEP 0501 (2005) 034
[hep-ph/0404014].

G. Barenboim, N. E. Mavromatos, S. Sarkar and A. Waldron-Lauda,
Nucl. Phys. B 758 (2006) 90 [hep-ph/0603028].

Y. Farzan, T. Schwetz and A. Y. Smirnov, JHEP 0807 (2008) 067
[arXiv:0805.2098 [hep-ph]].
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Quantum Decoherence

Quantum Decoherence

H is Hamiltonian, D[ρ] is QD effect

dρ

dt
= −i [H, ρ]−D[ρ]

Maintaining complete positivity leads to the Lindblad form

D[ρ] =
∑
m

[
{ρ,DmD

†
m} − 2DmρD

†
m

]
With consideration of unitarity and conservation of energy, Dm and H can
be simultaneously diagonalized

H = Diag[h1, h2, h3] , Dm = Diag[dm,1, dm,2, dm,3]
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Quantum Decoherence

Quantum Decoherence

Solving evolution equation

ρ(t) =

 ρ11(0) ρ12(0)e−(γ12−i∆12)t ρ13(0)e−(γ13−i∆13)t

ρ21(0)e−(γ21−i∆21)t ρ22(0) ρ23(0)e−(γ23−i∆23)t

ρ31(0)e−(γ31−i∆31)t ρ32(0)e−(γ32−i∆32)t ρ33(0)


Uαi is PMNS matrix

γij ≡
∑
m

(dm,i − dm,j)
2

∆ji ≡ hj − hi ≈
∆m2

ji

2Eν

ρij(0) = ρ
(α)
ij (0) = UαiU

∗
αj
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Quantum Decoherence

Quantum Decoherence

The flavor conversion probability is

Pαβ = 〈νβ|ρ(α)(t)|νβ〉 =
∑
ij

U∗βiUβj ρ
(α)
ij (t)

we conjecture an exponential dependence on energy for di

di =
√
γ0 exp

[
−
(
E

Ei

)n]
,

Previous explanation proposed a power law dependence (γ ∝ 1/En) that is
excluded now by Daya Bay and RENO because they predicted no
oscillation between near and far detectors (Y. Farzan, T. Schwetz and
A. Y. Smirnov, JHEP 0807 (2008) 067 [arXiv:0805.2098 [hep-ph]])
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Quantum Decoherence

Quantum Decoherence

Based on KamLAND

γ12 ' 0 and γ ≡ γ13 ' γ32

For ∆21L� 1

Pµ̄ē(γ, L) = Pµe(γ, L) ' 2|Uµ3|2|Ue3|2
[
1− e−γL cos(∆31L)

]
Pēē(γ, L) = Pee(γ, L) ' 1− 2|Ue3|2(1− |Ue3|2)

[
1− e−γL cos(∆31L)

]
Pµ̄µ̄(γ, L) = Pµµ(γ, L) ' 1− 2|Uµ3|2(1− |Uµ3|2)

[
1− e−γL cos(∆31L)

]
For LSND and KARMEN, ∆31L� 1

Pµ̄ē(γ, L) = Pµe(γ, L) = 2|Uµ3|2|Ue3|2
(

1− e−γL
)
≈ |Ue3|2

(
1− e−γL

)
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Analysis of short baseline and reactor neutrino data

Analysis of short baseline and reactor neutrino data
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n = 2, γ0 = 0.01 m−1 for both panels, and E1 = E2 = 20 MeV,
E3 = 55 MeV (E1 = E2 = 60 MeV, E3 = 200 MeV) for the left
(right) panel
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Analysis of short baseline and reactor neutrino data

Analysis of short baseline and reactor neutrino data
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Decoherence prediction for LSND for γ0 = 0.01 m−1,
E1 = E2 = 18 MeV and E3 = 63 MeV compared with data
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Analysis of short baseline and reactor neutrino data

Analysis of short baseline and reactor neutrino data
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Constrains on the parameters E1,3 from short baseline and reactor
experiments at 90% C.L. taking n = 2 and γ0 = 0.01 m−1.
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Analysis of short baseline and reactor neutrino data

Analysis of short baseline and reactor neutrino data

Data χ2
min/DOF GOF χ2

PG/DOF PG

LSND 4.8/8 77%
KARMEN 7.0/7 43%
Daya Bay and RENO 78/98 93%
LSND+KARMEN 14/17 66% 2.3/2 32%
LSND+KARMEN+Reactor 93/118 96% 3.2/4 52%

χ2
min/DOF and goodness of fit (GOF)

Consistency of different experiments, χ2
PG = χ2

tot,min −
∑

i χ
2
i ,min

E1 = E2 and E3 are taken as free parameters to fit the data and the
rest are fixed to γ0 = 0.01 m−1, n = 2 and sin2 2θ13 = 0.085
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Predictions for future experiments and possible experimental tests

Predictions for future experiments and possible
experimental tests

JUNO and RENO-50 experiments

reactor experiments
50 km baseline
They will be ready for data taking from 2020 for 5 years
In China and South Korea respectively

Pēē = 1− sin2 2θ12 sin2 ∆21L

2
− 1

2
sin2 2θ13

+
1

2
sin2 2θ13 e

−γL [cos2 θ12 cos(∆31L) + sin2 θ12 cos(∆32L)
]
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Predictions for future experiments and possible experimental tests

Predictions for future experiments and possible
experimental tests
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Event spectrum at JUNO for an exposure of 4320 kt GW yr.
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Predictions for future experiments and possible experimental tests

Predictions for future experiments and possible
experimental tests

In the shaded regions, JUNO can distinguish the decoherence scenario
from standard oscillations at more than 3σ (∆χ2 = 9).
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Summary

Summary

Review LSND anomaly

Review quantum decoherence

Quantum decoherence explains LSND anomaly

QD will be tested by future reactor experiments JUNO and RENO-50
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Summary

Thank you for your attention.
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