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DM direct detection (DD) J
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The direct detection event rate

Goodman, Drukier, Freese...

@ For elastic Sl interactions the rate can be written as
R(ER,t) = AZFi(ER)ﬁ(vm,t), with  7(vp,, t) = C/ dvvfdet(v,t)

where
Px 08I

2 )
2mxuxp

f(U)E/de(U,Q) and C=

mAER
Um = .

e For fixed m,, one can translate R(ER,t) in Er space into v, space,
and ﬁ(Um,t) is detector independent [Fox, Gondolo, HG, Bozorgnia...].

and by kinematics v > vy,
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A HI lower bound on DM CY,,, from a DD signal

JCAP 1505 (2015) 05, 036; arXiv [hep-ph]: 1502.03342
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The overlap in velocity space for Cs,, and DD
Gould, Edsjo, Kavanagh, Blennow JHG...

Overlap for vy, < v < v

2
o Capture range: “Xv? = Ey,, < Ep < By = MXA (v + gy (7))

o Maximum velocity: v < v (1) = A g esc(T)
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Assumptions for the lower bound

@ We neglect v, &~ 29km/s < vsyn

fdet(v) = fSun(U + ve) ~ fNSun(v) = fN(v) .

@ f(v) and p, are constant on time scales of equilibration, so they are
the same for the capture and for DD.
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A lower bound on the capture

RS v(ﬁross ~
Csun :47TCZA2/ drrsz(r)/ dvf(v)vFa(v,r)
A 0 0

Rg 'Uééross ~
> 47TZA2C/ derpA(r)/ dv f(v) v Fa(v,r).
0

Uthr

with Fa(v,r) fEma’EU) F3%(ER)dER.

From the DD spectrum one can extract

- 1 d (TR(Eg)
== (Fi(ER>)

@ The bound on Csy, can be expressed in terms of DD quantities.

o It is independent of f(v), Vesc, 0y and py.
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Xe mock data: bound vs SHM. BR: equil., I'syn = Csyn/2
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A HI lower bound on p,osy/sp for constant rates

arXiv [hep-ph]: 1505.05710
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Lower bound on the halo function

Feldstein, Kavanagh, Blennow...
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Lower bound on

vOspsp from # of events (CDMS-Si)

By — pyos1 > 2m—x,up Nie E “Events bound”
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— 051 < 3-107*3 cm? are disfavoured.
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Lower bound on p,0g1/sp from a spectrum (Xe SD mock)

2y p2 R(E1) vz R(ER)

By — pyos1 > X xp (m +/ v) “Spectrum bound”
X 2 \"BE) "), "RE

Simplified model: Majorana fermion Y, equal couplings to u,d, s, c:
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Constraints from LHC and relic abundance (p, = 0.4)

@ Shaded area: LHC limits. T'z» > M/ /2 (dotted-dashed).

® Qpound/sam < Qobs in red/blue for g, = 1(10) g, dashed (solid).

@ (2 bound also valid for multi-component if DD given by one species,
and p, x Q, (CDM). Conservative: more channels make it stronger.

Juan Herrero Garcia (KTH) Madrid, 23™ of June 2015 14 /19



A HI lower bound on p,osy/sp for annual
modulations

arXiv [hep-ph]: 1506.03503
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Lower bounds on p,osi/sp from a modulated spectrum pwg)

Bounds based on an expansion of 7(vm,t) on ve(t) [Schwetz, Zupan, JHG (2011, 2012)]

© General bound (only time-dependence in v.(t), f constant):

2myp2 1,1 %2 1N\-1 [ M(v)
> R A <7 d 7) d R “G 1?
PxIs1 = A2 v\ —i—/v U’UQ UF,%(ER) enera

1 U1

o Phase free.

@ Symmetric bound (preferred direction of the DM flow):

PJSI>2mXM%(1>_1 1 o
X =

— dv—5——~ “Symmetric”
A2 \y/  sinave J,, F3(ER) Y

o Phase constant.
e sina = 0.5: DM flow o vsun, to =June 2nd (isotropic, SHM, DD).
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Example: DAMA (already strongly disfavoured HI by DD)

Blue: SHM. Red: from bottom “Spectrum” solid, “General” dashed and
"Symmetric” dotted (sina = 1), dotted-dashed (sina = 0.5).
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Summary and conclusions |
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Summary and conclusions

@ We derived a lower bound on the capture rate in the Sun in terms of
a positive DD signal that is independent of f(v), Vesc, Tscatt and py.
o We assumed that f(v) and p, are constant on time scales relevant for
equilibration in the Sun and the same in both DD and Cgsyuy.
o It is strong for SD and channels to vv, 77 and m, 2 100 GeV.
@ We have derived a HI lower bound on p, o, for constant rates

o It allows to restrict particle physics models by comparison with local
density measurements, LHC, relic abundance or indirect detection.

© We have extended it to annual modulations

e Using previous works based on an expansion on the Earth's velocity.
o We illustrate them with DAMA data.
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Back-up slides )
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SD FF uncertainties, Xe (n), F (p). x = a,/a,

3 true(ER) ﬁ(’[)) d Ftrue(ER)
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Lower bound on p, for Xe SD from LHC limits

Juan Herrero Garcia
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Complementarity of the signals

| DD [ Isun | Lesson \
No No Keep trying...
Axions?

Eventually, does DM interact non-gravitationally?
No | Yes | There is no halo-independent lower bound on R from a v signal
Dark disk? [Bruch, Choi...]
Self-interactions? [Zentner...]
Inelastic? [Nussinov, Menon, Shu...]
Yes No Halo-independent lower bound on capture.
— Upper bounds on branching ratios [this work].
SD dominated by neutrons?
Asymmetric DM with suppressed I'? [Kaplan, Nussinov...]
Yes | Yes Check if the lower bounds here derived are fulfilled.
If so, extract DM properties by a fit [Arina, Serpico, Kavanagh...].
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A halo-independent framework for DD and capture

Previous works have studied:
@ The astrophysical uncertainties in DD [McCabe, Frandsen, Drees, Savage...].
@ The astrophysical uncertainties in the capture rate [Bruch, Choi...].
@ The complementarity of both signals [Arina, Serpico, Kavanagh...].
o

Also a halo-independent framework for DD is well-established and
extensively used [Fox, Del Nobile, Bozorgnia, Feldstein, JHG...].

In this work we establish a halo-independent framework for comparing

a positive DD signal with the capture rate in the Sun:

@ We use that ogcatt enters in both the DD signal and the capture rate.

@ However, the velocities probed by both are very different.
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A lower bound on the capture

Rg U(ﬂross N
Csun > 4w Z A2/ dTTQpA(T)/ dv <_ dz&j’)) -FA(Ua T)
A 0 V-

thr

Rg U::qross
=4 Z A? / drr®pa(r) | HineFa(Vine, 7) + / dvn(v) Fy(v,7)],
A 0 Vthr
where in the last line we integrated by parts, with F4(v2 ., 7) = 0.

o Either the derivative or the function 7(v), including its value at the
threshold, have to be determined from DD.

@ The bound is independent of the DM velocity distribution, the galactic
escape velocity, the scattering cross section and the local DM density.
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Numerical examples

We simulate mock data motivated by future experiments:

@ Xenon, with ogr = 107 cm? and ogp = 2 - 1074 cm?. Assuming
my = 100 GeV, for an exposure of 1 ton yr, about 154 (267) events
in the range 5 — 45 keV for SI (SD) are predicted.

o Germanium, with Fy, = 1 keV, focusing on low DM masses.
Assuming m, = 6 GeV and og1 =5 - 10~*2 cm? and
osp = 2-107%cm?, 1.5 x 10* (2-3) events for Sl (SD) predicted in
the range 1-10 keV for an exposure of 100 kg yr with energy
resolution of 30%.
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Maximum velocity for capture (shown for hydrogen, SD)

For the DM to be captured there is a minimal and maximal Eg:

202
m Ky A
Emin - XU2 ) Emax - X (

2 2
; A0+ ule(r)).

These define the maximum velocity to be trapped:

A (r) = \Amamy

v Uese(T)
cross esc
|my — ma|
50
50 my = 10 GeV Emax (Uesc = 1381 kms‘) _____ N m, = 100 GeV Erax (esc = 1381 k. 54)

.................................. R

% 30)

34 Emin

2 20

$)
Ermax (Uesc =618 kms™) Enmax (Uesc = 618kms™)
0
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v (km/s) v (km/s)
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Ca th re rate in the Sun [Press, Griest, Gould, Bergstrom, Edsjo, Blennow...]

@ The DM velocity inside the gravitational potential of the Sun

w? = v? + uZ (r), with u, (r) the escape velocity from the Sun.

@ The capture rete is given by (notice that wdw = vdv)

Cun—47T d d f Q ’ ’
S XZ/ 7“7'/ vf(w)vwQa(w,r)

with

Emin (w) dER

where Eg is the nuclear recoil energy.
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Results for Ge
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@ For xenon, for SD, annihilations into v would be constrained to BR at
the few % level. 77, WW at the 10% level.

@ For germanium, for both SD and Sl direct annihilations into v would
be constrained to BR at the few % level. 77 are at wrong m,.

@ Strong dependence on m,. Stronger bounds at the wrong m,.

v

Juan Herrero Garcia (KTH) Madrid, 23™ of June 2015 29 /19



Equilibrum

teq K tsun ~ 4.5 Gyr, where:

teq = ! ~

« V C'Sun ASun

10%'s 1)1/2 <3 -10726 cm381>1/2 (100 GeV>3/4
(ov) '

my

@ Agyy, is the annihilation rate in the Sun

@ (ov) the thermal average of the annihilation cross section.

@ Above Cgyy 2> 102 s in all cases except for Sl interactions in Xe
(os1 = 10745 cm?).

@ In this case, equilibrium may not be reached for annihilation cross
sections smaller or equal than the freeze-out one.
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Halo-independent bounds on annual modulation in DD

Annual modulation [Freese et all:

Depending on the time of the year,
we should receive more or less DM
flux in our detectors.

@ The annual modulation A, (v,,) can be constrained in terms of the
constant rate 77(v,,) (almost) halo-independently [JHG, Schwetz, Zupan],
by expanding n(v,t) in v./v < 1, with v, ~ 30 km/s.

o If there is a preferred direction in the DM velocity:

. dn
Ap(vm) < —vesin ahalo—dvn .
m

@ Therefore there is also a lower bound on the capture for A, (v,,):

RSun 'Uéqross A
Csun > 47?2/12/ derpA(r)/ dvﬂ]ﬁ(v).
A

0 . Sin ahalo Ve
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DAMA results

e Na dominates for DM masses m, < 20 GeV.
@ lodine is relevant for larger DM masses.

@ Small overlap for iodine for hydrogen (SD).
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DAMA (already excluded halo-independently by DD)

DAMA Sodium N DAMA lodine

DAMA in strong tension:

@ For Na, for SI DM annihilation into v, 77, bb are strongly constrained
for my 2 5,10, 30 GeV, respectively, while SD is excluded for v and
77, and also into bb for m, 2 8 GeV.

e For | and SI, strong bounds for m, 2 10,50 GeV for vv and 77.
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Expansion of n(vy,,t) in v./v

Vese > (V) > Uy >> Ve, s0 we can expand 7)(vp,, t) to first order in ve:

Tl(vm7t>—/ d*v fdet@)—/ py 3T+ Te)

v v

v

= / d3v M + /d3v fsun (V) o (t) OV —vp) —0(v—vp) vy] =

= 7(Um) + An(vm) cos 27T(t — tO)-

@ 7j(vp,) is constant, A, is modulated, with observed rates:

R =CF*(E,)f(vn) and Ap =CF*(E,)A,
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The general bound on the annual modulation

@ Halo “smooth” on < ve ~ 30km/s.

@ Only time dependence in v(t), not in fgyu, (no change on months).

/Uvmz Ao Ag(vm) < e ln(vml) ' /”’”1 i n(w]

v

ml

© |If there is a constant 0y a0 governing the modulation:

Um?2
/ AV, Ay(vm) < sinave (vim1)
v

'm1

where:
@ in general sin o can be set to 1.

e sina = 0.5 when 95410 x dsun (isotropic, SHM, DD...).
Then tg = June 1st.
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DAMA signal in the SHM

@ Sodium (red) and iodine (blue) for E = 2, 4, 6keVee (from bottom
to top as solid, dotted and dashed curves).

@ Dotted black below which M < 0, and as dashed black the typical
escape velocity in the detector rest frame.

@ SHM: 8 < m, (GeV) < 30 (30 S my (GeV) < 90) for Na (1)

1500,

*«.%:\\ \ \ DAMA
1000f N N\
NN N
Q \\ Vesc detector
500_ \\\ |
\\

Sodium S lodine

N b,
— N
SHM sign flip B : =
i fli -
20 \ e —ee

100

Vmin (km/s)

Juan Herrero Garcia (KTH) Madrid, 23™ of June 2015 36 /19



DAMA fit to the SHM

Vese = 550 km/s, py, = 0.4GeV em™3, gna = 0.3 and g = 0.09. Equal
couplings to protons and neutrons

L] ! l Na |
my (GeV) | osiysp (em?) | xZ; /dof [ my (GeV) [ ogy/sp (cm?) [ xZ;,/dof
Sl 79.4 1.1-107% 7.7/6 12.6 1.8-10~%0 8.3/6
SD 63.1 5.0- 1037 7.9/6 12.6 6.3-10737 8.7/6
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energy density
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Multi-target bounds

Bounds (in black) for DAMA modulation for Sl (top) and SD (bottom)
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