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Introduction: oscillations, global fits

trino oscillations

Neutrino oscillations

o Appearance/disappearance of neutrinos observed: solar, reactor, accelerator, atmospheric
@ Neutrino oscillations = neutrinos massive and flavours mixed

@ No color nor electromagnetic charge = neutrinos Majorana or Dirac particles

3 neutrinos — mixing described

unitary matrix

1 0 0 C13 0 513e_i5 Cc12 sip O only if Majorana
e e, |
g i io
U= 0 3 3 0 1 0 —sip cip 0 |diag (e Pe'7, 1)
0 —S23 23 75136"(S 0 C13 0 0 1
sjj = sin 8j;, cjj = cos 0;;
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Introduction: oscillations, global fits

Global fits

Global fits

@ Oscillation wavelengths 47rE/Am'.2j

o Different experiments sensitive to different sets of parameters = Global fits

s2, s2, s2 AmZ, /10 %eV? |m§1(32) [/10—3eV?

0.27-0.34 0.38—-0.64 0.019-0.025 7.0-8.1 23-26

Gonzalez-Garcia, et al., arXiv:1409.5439, nu-fit.org = data used here
Fogli et al., arXiv:1312.2878

Forero et al., arXiv:1405.7540
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Global fits

Global fits

@ Oscillation wavelengths 47rE/Am,.2j

o Different experiments sensitive to different sets of parameters = Global fits

s2, s2, s2 AmZ, /10 %eV? |m§1(32) [/10—3eV?

0.27-0.34 0.38—-0.64 0.019-0.025 7.0-8.1 23-26

Gonzalez-Garcia, et al., arXiv:1409.5439, nu-fit.org = data used here
Fogli et al., arXiv:1312.2878

Forero et al., arXiv:1405.7540

o Large mixing, different from quarks

@ Some info on §
@ Ordering of masses unknown:

o Normal (NO): m3 > my, mp
o Inverted (10): m3 < my, my
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Introduction: oscillations, global fits

Global fits — statistical method?

Standard likelihood/x? /frequentist fit

o Easy, commonly used, reasonably well understood

Johannes Bergstrom Bayesian analysis of neutrino oscillation data



Introduction: oscillations, global fits

Global fits — statistical method?

Standard likelihood/x quentist fit

o Easy, commonly used, reasonably well understood

@ Does not obey rules of consistent inference
o Depends on data that was never observed ( “significance”)

@ Distributions of test statistics not always known

o Find out through simulations, but limited computing resources
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Introduction: oscillations, global fits

Global fits — statistical method?

Standard likelihood/x? /frequentist fit

o Easy, commonly used, reasonably well understood

@ Does not obey rules of consistent inference
o Depends on data that was never observed ( “significance”)

@ Distributions of test statistics not always known

o Find out through simulations, but limited computing resources

Let's do a Bayesian one! :)
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Bayesian inference

Bayesian inference

Bayesian inference

o Proposition A associated with probability (plausibility) Pr(A)
o Related by laws of probability theory
o Update odds using data

Pr(AID)  Pr(D|A) Pr(A)
Pr(BID) ~  Pr(D|B) Pr(B)
Posterior odds =  Likelihood ratio (Bayes factor) - Prior odds

@ Usually prior odds =1
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Bayesian inference

Bayesian inference

o Proposition A associated with probability (plausibility) Pr(A)
o Related by laws of probability theory
o Update odds using data

Pr(AID)  Pr(D|A) Pr(A)
Pr(BID) ~  Pr(D|B) Pr(B)
Posterior odds =  Likelihood ratio (Bayes factor) - Prior odds

@ Usually prior odds =1

Evidence

o Model likelihood — evidence
z = / £(@)x(©)d"e
Model likelihood = Average likelihood of model parameters

o Evidence balances quality of fit and model complexity — can favour simpler model
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Bayesian inference

Bayesian inference

Bayesian inference
o Proposition A associated with probability (plausibility) Pr(A)
o Related by laws of probability theory
o Update odds using data

Pr(AID)  Pr(D|A) Pr(A)
Pr(BID) ~  Pr(D|B) Pr(B)
Posterior odds = Likelihood ratio (Bayes factor) - Prior odds

@ Usually prior odds =1

Jeffreys scale: translation into English

|log(odds)| Interpretation

< 1.0 Inconclusive
1.0 Weak evidence
2.5 Moderate evidence

5.0 Strong evidence
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Bayesian inference

Oscillation parameters and priors

Infer parameters a fixed model

Posterior distribution
Pr(©|D) x Pr(D|®) Pr(®) = L(O)7(O)

Posterior o< Likelihood x Prior
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Bayesian inference

Oscillation parameters and priors

Infer parameters a fixed model

Posterior distribution
Pr(©|D) x Pr(D|®) Pr(®) = L(O)7(O)

Posterior < Likelihood x Prior

Oscillation parameters and priors

@ A priori invariance under flavor transformations =

1
2 4 2 _
(12, €13, S33,0) = o

o Haar measure, Majorana and unphysical phases marginalized (Haba, Murayama, hep-ph/0009174)
5 5 . .
o Amj;, Ams,;, experimental nuisance params,. ..
@ Most interesting:
2
° s53
)

e mass ordering
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Results S52
CP.violation
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© Results
@ Posterior distributions
@ Mass ordering
° 5223

o CP-violation
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Posterior distributions
Mass ordering
Results

CP-violation

Posterior distributions: NO

—Posterior

-Profile L

@Bayes
0x’

oo ®

0
8.5|
5 @
= 7.5
< 7
6.5
=2.6|
~F
= 2.4
<
2'i).25 0.;} 0.35 0.4 0.6 0.02 0.0250 200 6.5 8 22 24 26
sin® 6o sin? fay sin® 6,3 cp Am3, Am?,
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Posterior distributions
Mass ordering

Results $52
CP.violation

Mass ordering

Mass ordering

o Don't know the ordering = include its uncertainty
o MO — Mixed ordering: Either NO or 10 with equal priors

@ Posterior distributions in MO = weighted average of NO and IO posteriors
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Posterior distributions
Mass ordering

Results S53
CP.violation

Mass ordering

Mass ordering

o Don't know the ordering = include its uncertainty
o MO — Mixed ordering: Either NO or 10 with equal priors

o Posterior distributions in MO = weighted average of NO and IO posteriors

But data says very little

o But data says very little:

Posterior of 10 ~ 0.55, log odds ~ 0.2

o Neither ordering preferred
e Compare with Ax?2 =1

o but no x?-distribution
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Posterior distributions

Mass ordering
Results

CP-violation

2, — estimation (NO)

Likelihoods: Bayesian vs. maximized

o Marginalization over § increases
probability of second octant 4

3{[—Posterior

“Significance” - 'I\D/Tm L
R AXQ

e S — Bayesian

e /Ax2

o Frequentist significance depends
on assumed value of §
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Posterior distributions
Mass ordering
2
Results S5
-violation

— model comparison

2 .
Sy3 — octant comparison

e Octants not nested — no x2-distribution for frequentist test
o Bayesian analysis straightforward — just do the integration

o Can also consider maximal mixing 5223 = 0.5 as a valid assumption (exact or approximate)
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s3, — model comparison

2 .
Sy3 — octant comparison

e Octants not nested — no x2-distribution for frequentist test
o Bayesian analysis straightforward — just do the integration

o Can also consider maximal mixing 5223 = 0.5 as a valid assumption (exact or approximate)

NO 10
2nd octant vs. 1st logB 0.3 1.2
(> 0 prefers 2nd oct) Ax? —-09 20

@ Second octant weakly preferred over the first for |O
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Posterior distributions
Mass ordering
Results S5
-violation

s3, — model comparison

2 .
Sy3 — octant comparison

e Octants not nested — no x2-distribution for frequentist test
o Bayesian analysis straightforward — just do the integration

o Can also consider maximal mixing 5223 = 0.5 as a valid assumption (exact or approximate)

NO 10

2nd octant vs. 1st logB 0.3 1.2

(> 0 prefers 2nd oct) Ax? —-09 20
Non-maximal vs. Maximal logB —-14 —1.2

(> 0 prefers non-maximal) Ax%® 0.9 2.0

@ Second octant weakly preferred over the first for |O

@ No evidence for non-maximal mixing — maximal weakly preferred

o Non-maximal punished for additional complexity — but unique and small
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Posterior distributions
ordering
Results
violation

CP-violation — estimation

l— Marginal £

A \|---Profile £ \‘
o= /A

N
L L N L L O J
150 200 250 300 350 -0.05 0 0.05

dcp Jep

0 50 100

Jarlskog invariant Jop = C12512C23S23C123513 sind

Frequentist analysis

@ Asymptotic distributions do not hold

o Statements regarding 0 depends on assumed 5223
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Posterior distributions
Mass ordering

Results S5a
CP-violation

0 — circularity
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Results

CP-violation - model comparison

Possbile assumptions
e §=0°
e § = 180°
o CPV: ¢ free

Posterior distributions
Mass ordering

s5-
CP-violation
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Posterior distributions
Mass ordering

Results S53
CP-violation

CP-violation - model comparison

Possbile assumptions

e 6=0°
e § = 180°
o CPV: ¢ free

o Weak penalty for additional parameter
o Bayesian analysis more powerful than normally, and than x?
o Compared to CPV:

NO 10
0 =0° -0.1 -0.8
§=180° —0.4 -0.1

No evidence for or against CPV
o Ax?~15—-35
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Conclusions

Conclusions

Conclusions

o Consistent Bayesian analysis — no need for distribution of test statistic etc.

o Neither ordering preferred

5223 — difference compared to x2, but no evidence for non-maximal mixing, or any octant

o ¢ — difference compared to X2, no evidence for CP-violation

Hopefully we will soon have better data to learn more
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Conclusions

Thank you!

Thank you!
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Conclusions

6 — circularity

estimates

@ Mean, median of § not well defined — depend on arbitrary choice of origin

(Ex: mean of 10° and 350° is 180°. Should be 0°)
o Always need invariant measures
o Circular mean
8 = arg(ed)
o Circular median : endpoint closer to mean of the diameter that splits the probability
equally

@ Also applies to standard deviation, correaltions, ...

Johannes Bergstrd Bayesian analysis of neutrino oscillation data



Conclusions

6 — dispersion

Standard deviation

o Standard deviation also not invariant under choice of origin

@ Make invariant by using V = (d?(4,6))

@ Invariant metric on circle: d(c, 8) = minimum arc length, or

Or from Euclidean embedding
d'(a, B)? = |e'* — > = 2(1 — cos(a — B))

Results:

a/o’ 65°/58° (NO)
—  56°/51° (I0)
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Conclusions
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Conclusions

2 .
S53—0 correlation

Linear correlation

o X2 only gives “local” correlation at best-fit

o Bayes gives global, but
(x=X)=¥)

ox0y

Not circular-invariant
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Conclusions

2 .
S53—0 correlation

Linear correlation

o X2 only gives “local” correlation at best-fit

o Bayes gives global, but
_ (=X =y

ox0y

Not circular-invariant

Correlation with circular variables

@ Between two circular variables
(sin(x — X) sin(y — ¥))
V(sin?(x = ) (sin2(y — 7))

lfee =

o Circular-linear . :
2 e aF 7 — 2rxsrxcres
fa = 1 2
— I

rxe = r(x,cosy), rs = r(x,siny), res = r(cosy,siny).

on en e to spe nd o grrelation /dependence
Bayesian analysis of neutrino oscillation data



Conclusions

2 g
S53—0 correlation

Mutual information

o How much is learned about x by knowing y?

P(xy) 4

PeP() Y

I(X,Y) = / P(x,y)log

o Equals 0 if and only if x and y independent
@ Invariant under redefinitions, boundary conditions
o For Gaussian | = log(1/v/1 — r?), define

n=v1—e2

NO 10 MO
ree —020 —0.15 —021
rq 027 016  0.23
rn 030 018  0.26
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