Neutrinos in cosmology

Yvonne Y. Y. Wong
The University of New South Wales
Sydney, Australia

Invisibles Workshop 2015, Madrid, June 22 – 26, 2015

The concordance flat ΛCDM model...

The simplest model consistent with present observations.

Plus flat spatial geometry+initial conditions from single-field inflation

The neutrino sector beyond ΛCDM...

There are many ways in which the neutrino sector might be more complex than is implied by the standard picture.

- Masses larger than 0.06 eV.
 - No reason to fix at the minimum mass.

Neutrino dark matter

$$\Omega_{v,0}h^2 = \sum \frac{m_v}{94 \text{ eV}} = ??$$

- Laboratory upper limit $\Sigma m_v < 7 \text{ eV}$ from β-decay endpoint.
- More than three flavours. $N_{\rm eff} \neq 3$?
 - Especially in view of the short baseline sterile neutrino.
- Free-streaming or not?
 - Possible new neutrino interactions.

Masses...

Free-streaming neutrinos...

For most of the observable history of the universe neutrinos have significant speeds.

- eV-mass neutrinos become nonrelativistic near γ decoupling.
- Even when nonrelativistic, neutrinos have large thermal motion.

CMB anisotropies

Large-scale matter distribution

$$v_{\text{thermal}} = \frac{T_{\text{v}}}{m_{\text{v}}} \simeq 50.4(1+z) \left(\frac{\text{eV}}{m_{\text{v}}}\right) \text{ km s}^{-1}$$

Gravitational potential wells

Free-streaming scale:

$$\lambda_{\text{FS}} \equiv \sqrt{\frac{8 \pi^2 v_{\text{thermal}}^2}{3 \Omega_m H^2}} \simeq 4.2 \sqrt{\frac{1+z}{\Omega_{m,0}}} \left(\frac{\text{eV}}{m_v}\right) h^{-1} \text{ Mpc}; \quad k_{\text{FS}} \equiv \frac{2 \pi}{\lambda_{\text{FS}}}$$

Non-clustering $\lambda \ll \lambda_{FS}$

$$k \gg k_{\rm FS}$$

Consider a neutrino and a cold dark matter particle encountering two gravitational potential wells of different sizes in an expanding universe:

 \rightarrow Cosmological neutrino mass measurement is based on observing this free-streaming induced potential decay at $\lambda << \lambda_{FS}$.

You've all seen this one...

$$P(k) = \langle |\delta(k)|^2 \rangle$$

But there are m_{ν} signatures in the CMB too...

10

Matter power

spectrum

CMB photons **deflected** by intervening matter distribution

Last scattering surface

We observe a slightly distorted image of the LSS ectrum, P(k) $\Sigma m_{\nu} = 0.0 \text{ eV}$ 10² $\Sigma m_{\nu} = 1 \times 1.2 \text{ eV}$ 10-1 Wavenumber, k [h Mpc⁻¹] Multipole moment, ℓ

 10^{3}

10²

Planck TT+TE+EE+lowP

 $\sum m_{\nu} < 0.49 \text{ eV } (95\% \text{ C.L.})$

... largely because of this lensed TT signal. Ade et al. 1502.01589

Weak lensing: lensing potential power spectrum...

Weak lensing: lensing potential power spectrum...

Planck TT+TE+EE+lowP+lensing $\sum m_{v} < 0.59 \text{ eV } (95\% \text{ C.L.})$

Not as good as the no-lensing bound, because of "slight" incompatibility of the lensing amplitude inferred from lensed TT and the lensing potential power spectrum.

This is essentially this integrated along the line-of-sight (with some geometric factors folded in).

Adding low-redshift, non-CMB data...

Two types: geometry vs shape

- **Geometric** (not directly sensitive to neutrino mass):
 - Type la supernova
 - Baryon acoustic oscillations ("wiggles") [least prone to nonlinearity issues]

Shape (directly sensitive to neutrino mass):

- Galaxy power spectrum
- Cluster abundance
- Lyman alpha forest

Planck **+BAO**
$$\sum m_{v} < 0.23 \text{ eV } (95\% \text{ C.} L.)$$

Planck+Ly
$$\alpha$$
 $\sum m_v < 0.12 \text{ eV } (95\% \text{ C.} L.)$

Palanque-Delabrouille et al. 2015

Pre- vs Post-Planck constraints... ACDM+neutrino mass (7 parameters)

The take-home message...

• Formally, the best "Planck party-line" minimal (7-parameter) upper bound on Σ m_v is still hovering around 0.2—0.3 eV post-Planck2.

- The bound has however become more robust against uncertainties relative to Pre-Planck bounds.
 - Less nonlinearities in BAO than in the matter power spectrum.
 - Does not rely on local measurement of the Hubble parameter...
 - ... or on the choice of lightcurve fitters for the Supernova la data.
- Dependence on cosmological model used for inference?

What about model dependence?

- I couldn't find anything in the papers accompanying V2...
- However, from V1 (March 2013):

of spatial flatness:

Planck1 + WP + (ACT ℓ > 1000 + SPT ℓ > 2000) + baryon acoustic oscillations

→ Some degradation, but still in the same ball park.

A fourth neutrino??

It doesn't even have to be a real neutrino...

Any particle species that

- Smallest relevant scale enters the horizon
- decouples while ultra-relativistic and before z ~ 10⁶
- does not interact with itself or anything else after decoupling

will behave (more or less) like a neutrino as far as the CMB and LSS are concerned.

Post-Planck2 N_{eff} ...

Planck-inferred N_{eff} compatible with 3.046 at better than 2σ .

∧CDM+N_{eff} (7 parameters)

$$N_{\rm eff} = 3.13 \pm 0.32$$
 $Planck$ TT+lowP;
 $N_{\rm eff} = 3.15 \pm 0.23$ $Planck$ TT+lowP+BAO; 68% C.I.
 $N_{\rm eff} = 2.99 \pm 0.20$ $Planck$ TT, TE, EE+lowP;
 $N_{\rm eff} = 3.04 \pm 0.18$ $Planck$ TT, TE, EE+lowP+BAO.

∧CDM+neutrino mass+N_{eff} (8 parameters)

$$\left. \begin{array}{l} N_{\rm eff} = 3.2 \pm 0.5 \\ \sum m_{\nu} < 0.32 \text{ eV} \end{array} \right\} \quad 95\%, Planck \, \text{TT+lowP+lensing+BAO}.$$

Looks like the end of the N_{eff} story... But note this...

The N_{eff}-H₀ degeneracy...

A larger $N_{\rm eff}$ does bring the Planck-inferred H_0 into better agreement with most direct measurements.

The N_{eff}-H₀ degeneracy...

A larger $N_{\rm eff}$ does bring the Planck-inferred H_0 into better agreement with most direct measurements.

Implications for the short baseline sterile neutrino...

Implications for the short baseline sterile neutrino...

Sterile neutrinos can be **produced in the early universe** via a combination of active—sterile neutrino oscillations and scattering, prior to neutrino decoupling (T ~ 1 MeV).

- Not a necessity, but depends on the effective Δm² and sin²2θ in the medium.
- Abundance calculated from the quantum kinetic equations.

Sigl & Raffelt 1993 McKellar & Thomson 1994 See also talks by Saviano and Archidiacono

But in a very very rough way:

High precision (< 0.1%) evaluation of the QKEs: Hannestad, Hansen, Tram & Y³W 2015

also Hannestad, Tamborra & Tram 2012 and older works of Abazajian, Di Bari, Foot, Kainulainen, etc. from 1990s-early 2000s Planck TT + lowP + lensing + BAO

Reconciling the SBL sterile neutrino with cosmology??

The SBL sterile neutrino is problematic for cosmology only because it is produced in abundance in the early universe.

→ If production can be **suppressed**, then there is no conflict... or is there?!?!

Some possible mechanisms:

- A large lepton asymmetry (L>>B~10⁻¹⁰)
- Secret sterile neutrino self-interaction 1 (4-fermion) See talk of Saviano
- Secret sterile neutrino self-interaction 2 (massless mediator) See talk of Archidiacono
- A low reheating temperature (T_R < 10 MeV)

Reconciling the SBL sterile... Large lepton asymmetry

L>>B \sim 10⁻¹⁰ generates an effective potential, suppressing the effective active-sterile mixing; L \sim 10⁻² will do.

$$\Gamma_{\text{prod}} \sim \frac{1}{2} \frac{(\Delta m^2/2 \, p)^2 \sin^2 2\theta}{(\Delta m^2/2 \, p)^2 \sin^2 2\theta + [(\Delta m^2/2 \, p) \cos 2\theta + V_m]^2 + \Gamma_a^2/4} \Gamma_a$$
Sterile production rate Vacuum mixing parameters
$$= \frac{8 \, \sqrt{2} \, G_F \, p}{3} \left(\frac{\rho_\ell}{M_W^2} + \frac{\rho_{\nu_a}}{M_Z^2} \right) \mp \frac{2 \, \sqrt{2} \, \zeta(3) \, G_F}{\pi^2} \, T^3 L$$
Finite temperature effects New

Caveat: Leads to significant spectral distortion for the (anti)electrons → can be very bad for primordial element abundances. Abazajian, Bell, Fuller & Y³W 2005, Saviano et al. 2013

Saviano et al. 2013

"Rough" numerical estimates of the v_e spectrum, and the Helium4 and Deuterium abundances

Measurements

$$Y_p = 0.254 \pm 0.003$$
 Izotov et al. 2013

$$^{2}H/H(x10^{5})=2.53\pm0.04$$

Cooke et al. 2014

<u>8 10 </u>				
Case	$\Delta N_{ m eff}$	$\Delta N_{ m eff}^{\langle y angle}$	Y_p	2 H/H (×10 5)
$ \xi \ll 10^{-3}$	1.0	1.0	0.259	2.90
$\xi_e = -\xi_\mu = 10^{-3}$	0.98	0.89	0.257	2.87
$ \xi_e = \xi_\mu = 10^{-3}$	0.77	0.51	0.256	2.81
$ \xi_e = -\xi_\mu = 10^{-2}$	0.52	0.44	0.255	2.74
$ \xi_e = \xi_\mu = 10^{-2}$	0.22	0.04	0.251	2.64
$\left \xi_e = \left \xi_\mu \right = 10^{-3}, ext{ no } u_s ight $	~ 0	_	0.246	2.56
$\left \xi_e = \left \xi_\mu \right = 10^{-2}, ext{ no } u_s ight $	~ 0	_	0.244	2.55
standard BBN	0	0	0.247	2.56

Reconciling the SBL sterile... Sterile self-interaction 1

Dasgupta & Kopp 2014 Hannestad, Hansen & Tram 2014

... mediated by X, with $T_v << M_X << M_z$.

Bonus: If X couples also to DM, can alleviate small-scale problems.

Caveats: ...

Caveats:

Spectral distortion for the (anti)electrons again (bad for BBN)

Saviano et al. 2014 see also her talk

Flavour equilibration (if secret coupling remains strong after BBN):

$$(\rho_{ee}, \rho_{\mu\mu}, \rho_{\tau\tau}, \rho_{ss})_{initial} \rightarrow (\rho_{ee}, \rho_{\mu\mu}, \rho_{\tau\tau}, \rho_{ss})_{final}$$
 $(1, 1, 1, 0)$
 $(3/4, 3/4, 3/4, 3/4)$

for CMB+LSS

Effective mass of the sterile neutrino
$$m_{\rm eff \, cosmo} = \frac{3}{4} \sqrt{\Delta m_{\rm SBL}^2} \sim 0.8 \, \text{eV}$$

Bringmann, Hasenkamp, Kersten 2014 Mirizzi et al 2014

In trouble with Planck neutrino mass limits again if $M_{\chi} > 1$ MeV...

The bottom line...

There are some fun games one can play to suppress sterile neutrino production in order to reconcile the SBL sterile neutrino with cosmological observations.

- Beware however that the phenomenology of flavour oscillations + scattering is highly nontrivial.
- There is **no** guaranteed way to make the SBL sterile neutrino completely "safe" for cosmology.

Free-streaming or not, and its relation to new neutrino interactions

New neutrino interactions...

Standard picture: neutrino decoupling at T ~ 1 MeV; they frees-stream thereafter.

A new hidden interactions can conceivably keep neutrinos in equilibrium at the time of CMB decoupling.

Interaction can locally isotropise the neutrino fluid.

→ Modifies the spacetime metric perturbations

$$ds^{2} = a^{2}(\tau)[-(1 + \Psi)d\tau^{2} + (1 + \Phi)(dx^{2} + dy^{2} + dz^{2})]$$

$$k^{2}(\Phi - \Psi) = 12\pi G a^{2}(\overline{\rho} + \overline{P})\sigma - \text{Anisotropic stress}$$

Observable consequences for the CMB anisotropies

e.g. 1: a new 4-fermion self-interaction...

Cyr-Racine & Sigurdson 2014

Delays neutrino "kinetic decoupling".

e.g. 1: a new 4-fermion self-interaction...

Cyr-Racine & Sigurdson 2014

Delays neutrino "kinetic decoupling".

e.g. 2: self-interaction mediated by a massless scalar...

Forastieri, Lattanzi & Natoli 2015

e.g. 2: self-interaction mediated by a massless scalar...

Forastieri, Lattanzi & Natoli 2015

Lots of fun games, but please don't do the following...

It has become fashionable in some quarters to use a sound speed and a viscosity parameter to parameterise neutrino free-streaming vs non-free-streaming behaviours.

$$\begin{split} \dot{\delta}_{\nu} &= \frac{\dot{a}}{a} \left(1 - 3c_{\text{eff}}^{2} \right) \left(\delta_{\nu} + 3 \frac{\dot{a}}{a} \frac{q_{\nu}}{k} \right) - k \left(q_{\nu} + \frac{2}{3k} \dot{h} \right); \\ \dot{q}_{\nu} &= k c_{\text{eff}}^{2} \left(\delta_{\nu} + 3 \frac{\dot{a}}{a} \frac{q_{\nu}}{k} \right) - \frac{\dot{a}}{a} q_{\nu} - \frac{2}{3} k \pi_{\nu}; \\ \dot{\pi}_{\nu} &= 3 k c_{\text{vis}}^{2} \left(\frac{2}{5} q_{\nu} + \frac{4}{15k} (\dot{h} + 6 \dot{\eta}) \right) - \frac{3}{5} k F_{\nu,3}; \\ \dot{F}_{\nu,\ell} &= \frac{k}{2\ell + 1} \left(\ell F_{\nu,\ell-1} - (\ell + 1) F_{\nu,\ell+1} \right), \quad (\ell \geq 3). \end{split}$$

- The parameterisation has been shown to be **unphysica**l, and has **no interpretation** in terms of particle scattering. Oldengott, Rampf & Y³W 2014; Cyr-Racine & Sigurdson 2014 Sellentin & Durrer 2014
- Claims of robust detection of free-streaming clearly refuted by the two examples.

Summary...

- Precision cosmological data provide strong constraints on the neutrino mass sum.
 - No significant formal improvement between the best pre-Planck, Planck1 and Planck2 upper bounds (at least not for the minimal 7-parameter model).
 - But the Planck2 bound is arguably more robust against nonlinearities.
- The fourth neutrino??
 - No evidence at all. But a 2.5σ discrepancy between Planck and (most) direct measurements of H₀ remains.
 - Reconciling the SBL sterile neutrino with cosmology remains difficult.
- Free-streaming vs interacting neutrinos.
 - Not as free-streaming as you think; plenty of room for new interactions.