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The concordance flat ΛCDM model...

13.4 billion years ago
(at photon decoupling)

Composition today

The simplest model consistent with present observations.

(Nearly)
Massless
Neutrinos
(3 families)

Plus flat spatial geometry+initial conditions 
from single-field inflation

ν-to-γ energy density 
ratio fixed by SM physics

5%

26%

69%

∑ mν=0.06 eVMin. value from 
oscillations experiments



  

There are many ways in which the neutrino sector might be more complex than is 
implied by the standard picture.

● Masses larger than 0.06 eV.

– No reason to fix at the minimum mass. 
– Laboratory upper limit Σmν < 7 eV from β-decay endpoint.

● More than three flavours.

– Especially in view of the short baseline sterile neutrino. 

● Free-streaming or not?

– Possible new neutrino interactions.

The neutrino sector beyond ΛCDM...

Ων , 0 h2=∑ mν

94 eV
=??

N eff≠3??

Neutrino dark matter



  

Masses...



  

For most of the observable history of the universe neutrinos have significant speeds.

Free-streaming neutrinos...

c
ν c

ν

Gravitational
potential wells

● eV-mass neutrinos become nonrelativistic 
near γ decoupling.

● Even when nonrelativistic, neutrinos have 
large thermal motion. 

Avoid 
gravitational
capture

CMB 
anisotropies

Large-scale
matter distribution

vthermal =
T ν

mν
≃ 50.4(1+z)(eV

mν
) km s−1

λFS≡√8π2 vthermal
2

3Ωm H 2 ≃4.2√1+z
Ωm ,0 (eV

mν
) h−1 Mpc ; k FS≡

2π
λFS

Free-streaming 
scale:

≪FS

k≫k FS

Non-clustering

cν c
ν



  

c
ν

c

c ν
c

c cν ν c ν

Some time later...

Only CDM 
clusters

Both CDM and
neutrinos cluster

ν

Consider a neutrino and a cold dark matter particle encountering two gravitational 
potential wells of different sizes in an expanding universe:

→ Cosmological neutrino mass measurement is based on observing this free-
streaming induced potential decay at λ<< λFS.

λ≫λ FS λ≪λ FS

cν c
νΨ

Ψ

Potential stays the same 
(during matter domination)

Potential decays



  

Galaxy 
redshift 
surveys

Lyman-α

Replace some CDM 
with neutrinos

Ωνh2=∑ mν

94eV

fν = Neutrino 
fraction

P (k )=〈∣δ(k )∣2〉

Cluster
abundance

ΔP
P

∝8 f ν≡8 Ων
Ωm

You've all seen this one...
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Small-scale
suppression
due to potential
decay



  

Fixed total matter density
Free H0 (sound horizon adjusted)

∑ mν=1×1.2 eV
∑ mν=3×0.4 eV
∑ mν=0 eV

Uplifting in the 
acoustic oscillation 
phase

Early ISW Effect 
(after photon 
decoupling)

But there are mν signatures in the CMB too...

WMAP ACT, SPT

Weak lensing

Planck [V1 March 2013; V2 February 2015]



  

Weak gravitational lensing...

Affects observed temperature
fluctuations here...

Matter power 
spectrum

Last 
scattering 
surface

CMB photons deflected by 
intervening matter distribution

We observe a slightly 
distorted image of the LSS



  

Weak gravitational lensing...

Affects observed temperature
fluctuations here...

Matter power 
spectrum

∑ mν<0.49 eV (95%C.L.)

Planck TT+TE+EE+lowP

... largely because of this lensed TT 
signal.

Last 
scattering 
surface

CMB photons deflected by 
intervening matter distribution

We observe a slightly 
distorted image of the LSS

Ade et al. 1502.01589



  

Weak lensing: lensing potential power spectrum...

Last 
scattering 
surface

CMB photons deflected by 
intervening matter distribution

Can also try to reconstruct the 
intervening matter distribution.  

Use 4-point correlation of observed 
map to infer the unlensed image.

→ Reconstruct deflection angle

→ Construct lensing potential map

Lensing potential
power spectrum

We observe a slightly 
distorted image of the LSS



  

Weak lensing: lensing potential power spectrum...

This is essentially this integrated along 
the line-of-sight (with some geometric 
factors folded in).

Lensing potential
power spectrum

Matter power 
spectrum

∑ mν<0.59 eV (95%C.L.)

Planck TT+TE+EE+lowP+lensing

Not as good as the no-lensing bound, because of 
“slight” incompatibility of the lensing amplitude 
inferred from lensed TT and the lensing potential 
power spectrum.



  

Adding low-redshift, non-CMB data...

Two types: geometry vs shape
● Geometric (not directly sensitive to 

neutrino mass): 

– Type Ia supernova
– Baryon acoustic oscillations 

(“wiggles”) [least prone to 
nonlinearity issues]

● Shape (directly sensitive to neutrino 
mass):

– Galaxy power spectrum
– Cluster abundance
– Lyman alpha forest

BAO wiggles

∑ mν<0.23 eV (95%C . L .)Planck +BAO

∑ mν<0.12 eV (95%C . L .)Planck+Lyα
Palanque-Delabrouille et al. 2015



  

Pre- vs Post-Planck constraints...

95% C.L. upper limits

ΛCDM+neutrino mass (7 parameters)

Planck TT+TE+EE+lowP+lensing 

∑ mν<0.59 eV (95%C.L.)

Planck TT+TE+EE+lowP+lensing 
+ baryon acoustic oscillations 

∑ mν<0.23 eV (95%C . L .)

WMAP9 + ACT 

WMAP7+ matter power spectrum + HST H0

Formally similar to the pre-Planck
best minimal bound, but arguably 
less prone to issues of nonlinearities.

Planck + Lyman-alpha

∑ mν<0.12 eV (95%C . L.)



  

The take-home message...

● Formally, the best “Planck party-line” minimal (7-parameter) upper bound on Σ mν 
is still hovering around 0.2—0.3 eV post-Planck2.

● The bound has however become more robust against uncertainties relative to 
Pre-Planck bounds.

– Less nonlinearities in BAO than in the matter power spectrum.
– Does not rely on local measurement of the Hubble parameter...
– … or on the choice of lightcurve fitters for the Supernova Ia data.

●  Dependence on cosmological model used for inference?



  

What about model dependence?

Planck1 + WP + (ACT ℓ > 1000 + SPT ℓ > 2000) + baryon acoustic oscillations 

∑ mν<0.25 eV (95%C.L.)

Dropping assumption 
of spatial flatness: ∑ mν<0.32 eV (95%C.L.)

Best minimal bound

● I couldn't find anything in the papers accompanying V2...

● However, from V1 (March 2013):

ΛCDM+neutrino mass 
(7 parameters)

→ Some degradation, but still in the same ball park. 



  

A fourth neutrino??



  

It doesn't even have to be a real neutrino...

∑i
ρν , i+ρX=N eff (78 π2

15
T ν

4)
=(3.046+ΔN eff )ρν

(0)

Any particle species that 

● decouples while ultra-relativistic and before z ~ 106

● does not interact with itself or anything else after decoupling

 will behave (more or less) like a neutrino as far as the CMB and LSS are concerned. 

Neutrino 
temperature
per definition

Corrections due to non-instantaneous 
decoupling,finite temperature effects, 
and flavour oscillations

Three SM neutrinos

Other non-interacting relativistic
energy densities, e.g., sterile 
neutrinos, axions, hidden 
photons, etc.

Smallest relevant
scale enters the horizon



  

Post-Planck2 Neff ...

Planck-inferred Neff compatible with 3.046 at better than 2σ. 

But note this...Looks like the end of the Neff story... 

ΛCDM+Neff (7 parameters)

ΛCDM+neutrino mass+Neff (8 parameters)

68% C.I.



  

The Neff-H0 degeneracy...

A larger Neff  does bring the Planck-inferred H0 into better agreement with most direct 
measurements. 

Efstathiou 2014
H 0=70.6±3.3 km s−1 Mpc−1

H 0=73.9±2.7 km s−1 Mpc−1

Efstathiou 2014

H 0=74.3±2.6km s−1 Mpc−1
Freedman et al. 2012



  

The Neff-H0 degeneracy...

A larger Neff  does bring the Planck-inferred H0 into better agreement with most direct 
measurements. 

Efstathiou 2014
H 0=70.6±3.3 km s−1 Mpc−1

H 0=73.9±2.7 km s−1 Mpc−1

Efstathiou 2014

H 0=74.3±2.6km s−1 Mpc−1
Freedman et al. 2012

Tammann and Reindl 2013
H 0=63.7±2.3kms−1 Mpc−1



  

Implications for the short baseline sterile neutrino...

LSND

Short-baseline 
reactors

Mention et al. 2011

MiniBooNE

Kopp, Maltoni 
& Schwetz 2011

ΔmSBL
2 ∼1 eV2

sin2 2θSBL∼3×10−3



  

Sterile neutrinos can be produced in the early universe via a combination of active–
sterile neutrino oscillations and scattering, prior to neutrino decoupling (T ~ 1 MeV).

● Not a necessity, but depends on the effective Δm2 and sin22θ in the medium.

● Abundance calculated from the quantum kinetic equations.  

● But in a very very rough way:  

Implications for the short baseline sterile neutrino...

ms<mα

Γprod∼
1
2

(Δm2/2 p)2sin2 2θ
(Δm2/2 p)2sin22θ+[(Δm2/2 p)cos2θ+V m]

2+Γa
2/4

Γa

Sigl & Raffelt 1993
McKellar  & Thomson 1994
See also talks by Saviano
and Archidiacono

Sterile
production rate Vacuum mixing 

parameters
Matter (MSW) 
effects

Active neutrino
scattering rate



  
also Hannestad, Tamborra & Tram 2012
and older works of Abazajian, Di Bari, 
Foot, Kainulainen, etc. from 1990s-early 2000s 

SBL-preferred

ΔN eff

High precision (< 0.1%) evaluation of the QKEs: Hannestad, Hansen, Tram & Y3W 2015

mSBL∼1 eV
ΔN eff∼1

Planck TT + lowP + lensing + BAO

Obviously at odds with
Planck limits...



  

The SBL sterile neutrino is problematic for cosmology only because it 
is produced in abundance in the early universe. 

→ If production can be suppressed, then there is no conflict... or 
is there?!?!

Reconciling the SBL sterile neutrino with cosmology??

Some possible mechanisms:

● A large lepton asymmetry (L>>B~10-10) 

● Secret sterile neutrino self-interaction 1 (4-fermion)

● Secret sterile neutrino self-interaction 2 (massless mediator)

● A low reheating temperature (TR < 10 MeV) 

See talk of Saviano 

See talk of Archidiacono 



  

Foot & Volkas 1995
L>>B~10-10 generates an effective potential, suppressing the effective active-sterile 
mixing; L ~ 10-2 will do.  

Reconciling the SBL sterile... Large lepton asymmetry

ms<mα

Γprod∼
1
2

(Δm2/2 p)2 sin2 2θ
(Δm2/2 p)2sin2 2θ+[(Δm2/2 p)cos 2θ+V m ]

2+Γa
2 /4

Γa

Sterile
production rate

Vacuum mixing 
parameters

Matter (MSW) 
effects Active neutrino

scattering rate

=
8√2GF p

3 ( ρℓ

MW
2 +

ρνa

M Z
2 )∓2√2 ζ(3)GF

π2 T 3 L
Finite temperature effects New

Caveat: Leads to significant spectral distortion for the (anti)electrons → can be very 
bad for primordial element abundances. Abazajian, Bell, Fuller & Y3W 2005, Saviano et al. 2013



  

Saviano et al. 2013

2 H /H (x 105)=2.53±0.04

Y p=0.254±0.003 Izotov et al. 2013

Cooke et al. 2014

“Rough” numerical estimates of the 
ν

e 
spectrum, and the Helium4 and 

Deuterium abundances 

Measurements
:



  

... mediated by X, with T
ν
 << M

X
 << M

Z
.

Reconciling the SBL sterile... Sterile self -interaction 1

ms<mα

Γprod∼
1
2

(Δm2/2 p)2 sin2 2θ
(Δm2/2 p)2sin2 2θ+[(Δm2/2 p)cos 2θ+V m ]

2+(Γa+Γs)
2/4

(Γa+Γs)

Sterile
production rate

Vacuum mixing 
parameters

Matter (MSW) 
effects Active+sterile

scattering rate

=
8√2GF p

3 ( ρℓ
M W

2 +
ρνa

M Z
2 )+8√2GX p

3
ρνs

M X
2

Bonus: If X couples also to DM, can alleviate small-scale problems. 

Caveats: ...

Dasgupta & Kopp 2014
Hannestad, Hansen & Tram 2014

Γa∼GF pT 4

Γs∼GX pT nνs



  

Caveats:

● Spectral distortion for the (anti)electrons again (bad for BBN)

● Flavour equilibration (if secret coupling remains strong after BBN) : 

Saviano et al. 2014
see also her talk

meff cosmo=
3
4 √ΔmSBL

2 ∼0.8 eV
Effective mass of 
the sterile neutrino 
for CMB+LSS Bringmann, Hasenkamp,Kersten 2014

Mirizzi et al 2014

In trouble with Planck neutrino mass limits again if M
X
 > 1 MeV...



  

The bottom line...

There are some fun games one can play to suppress sterile neutrino 
production in order to reconcile the SBL sterile neutrino with 
cosmological observations. 

● Beware however that the phenomenology of flavour oscillations + 
scattering is highly nontrivial. 

● There is no guaranteed way to make the SBL sterile neutrino 
completely “safe” for cosmology.



  

Free-streaming or not, and its relation 
to new neutrino interactions



  

Isotropic stress
(pressure) Anisotropic stress

Standard picture: neutrino decoupling at T ~ 1 MeV; they frees-stream thereafter.

A new hidden interactions can conceivably keep neutrinos in equilibrium at the time of 
CMB decoupling. 

● Interaction can locally isotropise the neutrino fluid.

New neutrino interactions...

ds2=a2( τ)[−(1+Ψ)d τ2+(1+Φ)(dx 2+dy2+dz2)]

→ Modifies the spacetime metric perturbations

k2(Φ−Ψ)=12πG a2(ρ̄+P̄)σ Anisotropic stress

Observable 
consequences for
the CMB 
anisotropies 



  

e.g. 1: a new 4-fermion self-interaction...
Cyr-Racine & Sigurdson 2014

log10(GX

GF )<7.9 (95%)“Standard mode”

log10(GX

GF
)=8.9±0.2

“Strongly-coupled mode”

Delays neutrino “kinetic decoupling”.

Lowest “kinetic decoupling” 
temperature of 
neutrinos is ~ 25 eV.



  

e.g. 1: a new 4-fermion self-interaction...
Cyr-Racine & Sigurdson 2014

log10(GX

GF )<7.9 (95%)“Standard mode”
Lowest “kinetic decoupling” 
temperature of 
neutrinos is ~ 25 eV.

Delays neutrino “kinetic decoupling”.



  

e.g. 2: self-interaction mediated by a massless scalar...
Forastieri, Lattanzi & Natoli 2015

log T

Weak interaction, ~T5

Hubble rate, ~T2

New interaction, ~T

T ~ 1 MeV  Trec 

log Γ Weak decoupling

Neutrinos
recoupled by
new 
interaction



  

e.g. 2: self-interaction mediated by a massless scalar...
Forastieri, Lattanzi & Natoli 2015

Planck+WP
Planck+WP+highL

z rec∼1300−3300

z rec<8500 (95%)

Highest redshift at which
neutrinos could have been
recoupled before
recombination

A small preference for 
recoupling shortly before
recombination 



  

It has become fashionable in some quarters to use a sound speed and a viscosity 
parameter to parameterise neutrino free-streaming vs non-free-streaming behaviours.

Oldengott, Rampf & Y3W 2014; Cyr-Racine & Sigurdson  2014
Sellentin & Durrer 2014

Lots of fun games, but please don't do the following...

● The parameterisation has been shown to be unphysical, and has no interpretation 
in terms of particle scattering.

● Claims of robust detection of free-streaming clearly refuted by the two examples.



  

Summary...

● Precision cosmological data provide strong constraints on the neutrino mass 
sum.

– No significant formal improvement between the best pre-Planck, Planck1 and 
Planck2 upper bounds (at least not for the minimal 7-parameter model).

– But the Planck2 bound is arguably more robust against nonlinearities.

● The fourth neutrino??  
– No evidence at all.  But a 2.5σ discrepancy between Planck and (most) direct 

measurements of H0 remains.

– Reconciling the SBL sterile neutrino with cosmology remains difficult.

● Free-streaming vs interacting neutrinos.
– Not as free-streaming as you think; plenty of room for new interactions.
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