Introduction Low scale seesaw leptogenesis Outlook

TESTING LEPTOGENESIS AT SHIP, LHC AND BELLE II

Marco Drewes TU München

based on arXiv:1502.00477 [hep-ph] arXiv:1404.7114 [hep-ph] arXiv:1208.4607 [hep-ph]

2013 review arXiv:1303.6912 [hep-ph], update arXiv:1502.06891 [hep-ph]

22. 6. 2015 invisibles2015 workshop, Madrid, Spain

The Standard Model and General Relativity together explain almost all phenomena observed in nature, but...

- gravity is not quantised
- a handful of observations remain unexplained
 - neutrino oscillations
 - baryon asymmetry of the universe
 - dark matter
 - accelerated cosmic expansion (Dark Energy, inflation)

leptogenesis

Introduction

Introduction Low scale seesaw leptogenesis Outlook

The **Standard Model** and **General Relativity** together explain *almost* all phenomena observed in nature, but...

- gravity is not quantised
- a handful of observations remain unexplained
 - neutrino oscillations the only signal found in the lab!
 - baryon asymmetry of the universe
 - dark matter
 - accelerated cosmic expansion (Dark Energy, inflation)

FEOTING LEDTOCENEOUS AT CHIR LHC AND BELLE L

2/18

Introduction Low scale seesaw leptogenesis Outlook

The **Standard Model** and **General Relativity** together explain *almost* all phenomena observed in nature, but...

- gravity is not quantised
- a handful of observations remain unexplained
 - neutrino oscillations the only signal found in the lab!
 - baryon asymmetry of the universe leptogenesis?
 - dark matter sterile neutrinos?
 - accelerated cosmic expansion (Dark Energy, inflation)

FEOTING LEDTOCENEOUS AT CHIR LHC AND BELLE L

Three Generations of Matter (Fermions) spin 1/2

Neutrino masses: Seesaw mechanism

$$\mathcal{L} = \mathcal{L}_{SM} + i\bar{\nu}_R \partial \!\!\!/ \nu_R - \bar{L}_L F \nu_R \tilde{H} - \bar{\nu}_R F^\dagger L \tilde{H}^\dagger - \frac{1}{2} (\bar{\nu^c}_R M_M \nu_R + \bar{\nu}_R M_M^\dagger \nu_R^c)$$

Minkowski 1979, Gell-Mann/Ramond/Slansky 1979, Mohapatra/Senjanovic 1979, Yanaqida 1980

$$\Rightarrow \frac{1}{2} (\overline{\nu_L} \, \overline{\nu_R^c}) \left(\begin{array}{cc} 0 & m_D \\ m_D^T & M_M \end{array} \right) \left(\begin{array}{c} \nu_L^c \\ \nu_R \end{array} \right)$$

two sets of Majorana mass states with mixing $\theta = m_D M_M^{-1} = vFM_M^{-1}$

Neutrino masses: Seesaw mechanism

$$\mathcal{L} = \mathcal{L}_{SM} + i \bar{\nu}_R \partial \!\!\!/ \nu_R - \bar{L}_L F \nu_R \tilde{H} - \bar{\nu}_R F^\dagger L \tilde{H}^\dagger - \frac{1}{2} (\bar{\nu^c}_R M_M \nu_R + \bar{\nu}_R M_M^\dagger \nu_R^c)$$

Minkowski 1979, Gell-Mann/Ramond/Slansky 1979, Mohapatra/Senjanovic 1979, Yanagida 1980

$$\Rightarrow \ \frac{1}{2} (\overline{\nu_L} \ \overline{\nu_R^c}) \left(\begin{array}{cc} 0 & m_D \\ m_D^T & M_M \end{array} \right) \left(\begin{array}{c} \nu_L^c \\ \nu_R \end{array} \right)$$

two sets of Majorana mass states with mixing $\theta = m_D M_M^{-1} = vFM_M^{-1}$

- three light neutrinos $v \simeq U_{\nu}(\nu_I + \theta \nu_P^c)$
 - mostly "active" SU(2) doublet
 - light masses $m_{\nu} \simeq \theta M_{\rm M} \theta^{\rm T} = v^2 F M_{\rm M}^{-1} F^{\rm T}$
- three heavy neutrinos $N \simeq \nu_R + \theta^T \nu_I^c$
 - mostly "sterile" singlets
 - heavy masses $M_N \simeq M_M$
- Majorana masses M_M introduce new mass scale(s)
- new heavy states only interact via small mixing $\theta \ll 1$

Introduction Low scale seesaw leptogenesis Outloo

ν -oscillation data and the seesaw scale

TESTING LEPTOGENESIS AT SHIP, LHC AND BELLE II

The low scale seesaw

Pros:

- some theoretical arguments (no new scale Asaka/Shaposhnikov, classical scale invariance Khoze/Ro,...)
- allows for leptogenesis
 - during ν_R decay Pilaftsis 9707235
 - during \(\nu_R\) production Akhmedov/Rubakov/Smirnov 9803255, Asaka/Shaposhnikov 0505013
 without mass degeneracy MaD/Garbrecht 1206.5537, Canetti/MaD/Garbrecht 1404.7114
- new states can be found at colliders Gorbunov/Shaposhnikov, Kersten/Smirnov, Atre/Han/Pascoli/Zhang, Dev/Pilaftsis/Yang, Izaguirre/Shuve, Castillo-Felisola/Dib/Helo/Kovalenko/Ortiz, Ng/de la Puente/Pan, others...

Cons:

- ullet very small Yukawa couplings F or cancellations in $m_
 u$
- accessible regime constrained from low energy observations, in particular $\nu \to e\gamma$, $0\nu\beta\beta$ -decay, PMNS-unitarity

Ibarra/Molinaro/Petcov 1103.6217, Abada/Das/Teixeira/Vicente/Weiland 1311.2830, Basso/Fischer/van der Bij 1310.2057, Endo/Yoshinaga 1404.4498, Asaka/Eijima/Takeda 1506.00417, MaD/Garbrecht 1502.00477

Where to see the N_l

Indirect searches

Direct searches

• Cosmology: BBN and N_{eff}

Where to see the N_l

Indirect searches

- neutrino oscillation data
- LFV in rare lepton decays
- violation of lepton universality,
- (apparent) violation of CKM unitarity
- neutrinoless double β -decay
- EW precision data
- Direct searches

Cosmology: BBN and N_{eff}

Where to see the N_l

Indirect searches

- neutrino oscillation data
- LFV in rare lepton decays
- violation of lepton universality,
- (apparent) violation of CKM unitarity
- neutrinoless double β -decay
- EW precision data

Direct searches

LNV and LFV in gauge boson or meson decays

- displaced vertices
- peak searches, missing 4-momentum
- Cosmology: BBN and N_{eff}

Bounds from cosmology: $N_{\rm eff}$ and BBN

from Hernandez/Kevic/Lopez-Pavon 1406.2961

Introduction (Low scale seesaw) leptogenesis Outlook

Bounds from Colliders

plot from MaD/Garbrecht 1502.00477

Combining direct and indirect bounds: EW scale

to be updated in arXiv:1502.00477 [hep-ph]

Present direct and indirect constraints: GeV scale

Introduction Low scale seesaw (leptogenesis) Outlook

Leptogenesis with 2 GeV scale RH neutrinos

Canetto/MaD/Frossard/Shaposhnikov 1208.4607

Requires mass degeneracy and small mixing...

...but CP-violation may also be measurable Cvetic/Kim/Zamora-Saa 1403.2555

Introduction Low scale seesaw (leptogenesis) Outlook

Leptogenesis with 3 GeV scale RH neutrinos

 $\it M_1=1$ GeV, $\it M_3=3$ GeV plot updated from Canetti/MaD/Garbrecht 1404.7114 CP-violation may also be measurable <code>Cvetic/Kim/Zamora-Saa</code> 1403.2555

⇒ LHCb, BELLE, SHIP may unveil the origin of matter!

Introduction Low scale seesaw leptogenesis

Where is the New Physics hiding?

Introduction Low scale seesaw leptogenesis

Future searches

Plot from arXiv:1504.04855 [hep-ph]

Introduction Low scale seesaw leptogenesis Outlook

The SHiP Experiment

- intensity frontier experiment using CERN SPS beam
- fixed target experiment with strong shield
- technical report arXiv:1504.04956 [physics.ins-det]

The SHiP Experiment

Search for Hidden Particles

- neutrino portal
- scalar / Higgs portal
- vector portal
- axion-like particles
- ν_{τ} physics
- LFV in τ -decays
- very light neutralino?
- your proposal!

see arXiv:1504.04855 [hep-ph] for details great opportunity at the intensity frontier

Summary

- ν-oscillations are the only BSM signal seen in the lab definitely require new BSM degrees of freedom!
- the new particles are RH neutrinos, they may be related to cosmological puzzles (Dark Matter, baryogenesis, Dark Radiation)
- if new particles are below the electroweak scale, they can be found experimentally ⇒ experimental search for exciting New Physics!
- even if they are heavier, indirect probes involve
 - neutrino oscillation experiments
 - neutrinoless double β -decay
 - lepton flavour violation
 - lepton universality violation
 - unitarity of the observed CKM matrix

We are looking forward to exciting new data...

