

Future Neutrino Oscillation Experiments

Takaaki Kajita
ICRR and Kavli-IPMU, University of Tokyo

Outline

- Introduction
- Future neutrino oscillation experiments
 - Mass hierarchy
 - CP violation
- Other physics with future neutrino detectors
 - Proton decay
- Summary

Apologies: I cannot discuss all future neutrino osc. experiments. In particular, I will not discuss sterile neutrinos. I will discuss near future experiments only.

Introduction

Double CHOOZ

MINOS T2K

- $\checkmark \theta_{13}$ has already been measured very accurately.
- \checkmark θ_{12} , θ_{23} , Δm_{12}^2 and $|\Delta m_{23}^2|$ have also been measured accurately.

Beyond θ_{13}

 θ_{13} is not very small

Mass hierarchy?

or

Is the mass pattern of neutrinos similar to those of quarks and charged leptons?

CP violation?

$$P(\nu_{\alpha} \to \nu_{\beta}) \neq P(\overline{\nu}_{\alpha} \to \overline{\nu}_{\beta})$$
?

Baryon asymmetry of the Universe?

Future neutrino oscillation experiments

Mass hierarchy

2 methods / 3 beams:

- Oscillation pattern
 - \checkmark Reactor v exp.
- Matter effect
 - \checkmark Atmospheric $\sqrt{\text{exp.}}$
 - ✓ LBL experiment

Future neutrino osc. exp's sensitive to mass hierarchy

Method 1: Reactor exp's

Method 2 (1): Atmospheric v

KM3NeT/ORCA

Method 2 (2): LBL vexp's

Method 1: Reactor MH experiments

Sensitivity to MH

Assume: JUNO (20kton, 3%/sqrt(E))

J. Cao, Neutrino Telescope 2015

Other physics: precise measurements of θ_{12} , Δm_{12}^2 , Δm_{13}^2 , supernova neutrinos, diffuse SN neutrinos ...

Status of JUNO and RENO-50

JUNO

J. Cao, Neutrino Telescope 2015

RENO-50

S-H. Seo, Neutrino Telescope 2015

- Approved in Feb. 2013, with ~300M\$ budget
- ➤ Ground breaking in Jan. 2015. (Civil construction will be completed in 3 years.)
- Data taking in 2020.

- ➤ Candidate site identified at the distance of 47km from the reactors.
- ➤ 2M\$ grant from Samsung was awarded to RENO-50 R&D.

Method 2 (1): Atmospheric neutrino experiments

Osci. Probabilities for Normal Hierarchy

 $P(\nu_{\mu} \rightarrow \nu_{\mu})$

 $P(v_{\mu} \rightarrow v_{e})$

Atmospheric and LBL oscillation exp's use these features.

PINGU and KM3NeT/ORCA: Sensitivities to MH

PINGU and KM3NeT/ORCA are low-energy extensions of Neutrino Telescopes. Both have multi-M ton volume and >2000 Optical Modules.

S. Boeser Neutrino Telescope 2015

PINGU (example)

Normal – Inverted

Vμ (CC)

Vμ (CC)

Normal – Inverted

Cascade

Output

Description of the property of the

-1.2

-1.6

 $\text{cos}\theta_{\text{zenith}}$

HΜN

✓ Both cascade (v_e enriched) and track (v_u enriched) used.

-1.5

✓ Detector resolutions taken into account.

 $\text{cos}\theta_{\text{zenith}}$

KM3NeT/ORCA has very similar sensitivity.

In both experiments, $\sim 3\sigma$ in 3 years is expected (systematic very important).

12

Plans of PINGU and KM3NeT/ORCA

PINGU

S. Boeser Neutrino Telescope 2015

- Deployment well understood with the experience of IceCube
- > 20 strings per season (40 strings in total (baseline design))
- Completion possible by early 2021 or 2022.

KM3NeT/ORCA

T. Eberl, Neutrino Telescope 2015

➤ Deployment test with ORCA style string in Mid. 2015 (Phase 1)

- ➤ 6 strings deployed and operational by the end of 2016 (approved)
- > Start construction 2017 (Phase 2.0)
- Completion possible in 2020

INO-ICAL

INO-ICAL status

- > The site is Bodi West Hills.
- ➤ Civil works such as water, electricity, approach road have started.
- ➤ R&D works such as a 35 ton prototype with magnetic field are in progress.

- ➤ Construction of the tunnel expected to begin by the end of 2015.
- > Tunnel and experimental hall: 3-4 years.
- > One module per year (total 3 years).

G. Majumder, Neutrino Telescope. March 2015

Hyper-Kamiokande

Hyper-K, PTEP (2015)

Access Tunnel

Cavity

Caning

Cavity

Cavity

Caning

Cavity

Cavity

Caning

Cavity

C

Cavity: 48m(W) x 54m(H) x 250m(L) x 2

Water volume :

• Total: 0.496x2 = 0.99 Mton

Fiducial volume = 0.56 Mton (25x SK)

Photo-detectors :

• ID: ~99,000 20" PMTs, 20% photo-coverage

• OD: ~25,000 8" PMTs, same coverage as SK

•750 kW (assumed)

2.5 degree off-axisbeam from J-PARC295km baseline lengthandAtmospheric neutrinos

Hyper-Kamiokande

MH determination with Atmospheric neutrinos

Hyper-Kamiokande status and plan

- proto-collaboration has been formed
- 240 people from 13 countries
- R&D funds have been granted in several countries
- Selected as one of the 25 top priority future projects by Science Council of Japan in 2014
- ➤ But was not included in the MEXT (Japanese funding agency) roadmap in 2014 → must wait for the next round (2017)
- ➤ If the construction begins in 2018, experiment ~2025

Method 2 (2): LBL experiment (LBNF/DUNE)

- ✓ 1.2 MW beam(→ upgradable to 2.4 MW)
- √ 40kton Liq. Ar
- √ 1300km baseline length

LBNE collab. arXiv: 1307.7335

J. Strait, 2nd International Meeting for Large neutrino Infrastructures, April 2015

LBNF/DUNE

LBNF/DUNE status and plan

J. Strait, 2nd International Meeting for Large neutrino Infrastructures, April 2015

- 769 collaborators from 25 countries
- Huge progress in the last one year
- > Schedule goals set in the LOI submitted to the Fermilab PAC:
 - development of the first 10-kt fid. mass detector on the time scale of 2021 followed by future expansion to the full size as soon as possible
 - 1.2 MW of power by 2024, ... up to 2.4 MW of beam power by 2030

Mass hierarchy determination: Grand view

M. Blennow et al. arXiv: 1311.1822

With time, our knowledge on mass hierarchy will get certain...

Before 2020, we get some indication for MH

Before 2025, ~3 σ understanding

Before 2030, \sim 5 σ determination

- European Strategy (2013): "CERN should develop a neutrino program to pave the way for a substantial European role in future long-baseline experiments"
- In 2014, CERN has released an important amount of resources for a CERN Neutrino Platform, as part of its medium term plan (5 yrs)
- CERN will assist the EU neutrino community in their long term common plans.
- CERN Neutrino Platform activities:
 - ✓ Large scale demonstrators (Single- and Double-phase LAr TPC)
 - ✓ Generic neutrino detector R&D
 - ✓ Infrastructure (incl. cryogenics)
 - ✓ Beam component R&D

ICARUS detector at CERN to make it ready for SBL experiment at Fermilab

Test beam and test facility (EHN1 extension)

CP violation

> LBL experiment

LBL experiments (LBNF/DUNE and J-PARC/Hyper-Kamiokande)

<u>NH assumed</u>

LBNF/DUNE (34kton in this fig.)

◆J-PARC/Hyper-K (1.66MW with shorter run time in this fig.)

CP violation (LBNF/DUNE and J-PARC/Hyper-Kamiokande)

<u>CP violation sensitivity</u> (MH assumed to be known) Plot by M. Shiozawa K. Abe et al., arXiv: 1502.05199 M.Thomson, 2nd International meeting for Large Neutrino Infrastructure, April 2015

Hyper-K slightly better due to larger statistics

(\rightarrow low E short BL is OK \rightarrow other possibilities; Dae δ alus and ESSnuSB)

CP phase measurement

Measurement of δ_{CP} (MH assumed to be known)

K. Abe et al., arXiv: 1502.05199

Other physics with future neutrino detectors

Proton decay

Proton decays (1): $e^+\pi^0$

• Because of the importance of proton decay, we should not forget about proton decay in the future (neutrino) detectors.

Water Cherenkov: Simulation with 20% photocathode coverage.

	Hyper-K		DUNE (LAr-TPC)	
e+π ⁰	Eff. (%)	BG (/Mt y)	Eff. (%)	BG (/Mt y)
	40	2.5	45	1

A. Bueno et al., hep-ph/0701101

Proton decays (2): \bar{v} K^{+}

Liq. Argon: Simulation.

K⁺ decay time (nsec)

	Hyper-K		DUNE (LAr-TPC)	
νK ⁺	Eff. (%)	BG (/Mt y)	Eff. (%)	BG (/Mt y)
	13	6.2	97	1

Estimate from SK collab.

arXiv: 1408.1195 (w/ 20% coverage)

- A. Bueno et al., hep-ph/0701101,
- B. LBNE collab., arXiv:1307.7335

Proton decays: estimated limit...

Summary

- The neutrino community has been planning many (and complementary) projects.
- ◆In the last few years, many things have happened.
- Some "future experiments" already entered into the project phase!
- ◆ We will learn much more on neutrinos in the coming years!

Back ups

Global fit

PINGU and KM3NeT/ORCA: Sensitivities to MH

Both cascade (v_e enriched) and track (v_{μ} enriched) used. Detector resolutions taken into account.

PINGU

S. Boeser Neutrino Telescope 2015

Instrumented volume: ~5 M m³ 2400 Optical Modules.

KM3NeT/ORCA

T. Eberl, Neutrino Telescope 2015

Instrumented volume: ~3.7M m³ 2070 Optical Modules

KM3NeT/ORCA sensitivity (PRELIMINARY Feb 2015)

In both experiments, $\sim 3\sigma$ in 3 years is expected (systematic very important).

MH in Hyper-K

Beam only (3yrs v + 7 years anti-v)

 $30 \sim 40\%$ chance (by J-PARC – Hyper-K beam ν only)

$heta_{23}$ octant in Hyper-K based on atmospheric v

Supernova neutrinos

K. Scholberg, Ann. Rev. Nucl. Part. Sci. 62 (2012) 81-103.

European Spallation Source for neutrinos: ESSnuSB

- The ESS linac being built in Lund for neutron spallation: proton acceleration 5 MW
- Repetition rate can be increased to permit acceleration of
 - 5 MW protons for neutrons + 5 MW H- for neutrinos
- $>2.7x10^{23}$ 2 GeV p.o.t/year
- Detector at 2nd oscillation max (2 GeV, 540 km)
- CPV: 5 σ could be reached over 60% of δ_{CP} range
- WC Detector 500 kt: MEMPHYS
- ESS ready by 2023
- If CDR ready by 2018, ESSnuSB ready by 2030

