Dark matter (astro)physics: a theorist's perspective

Paolo Gondolo University of Utah

Dark matter (astro)physics

- Fifty shades of dark
- The forbidden fruit
- Confusion of the mind
- That which does not kill us makes us stronger

Fifty shades of dark

Evidence for cold dark matter

Evidence for cold dark matter

Large Scale Structure

Cosmic Microwave Background

Galaxy Clusters

fraction of one-half can be interpreted instead as the value Evidence i <u>the gNFW fits.</u> We find a 4.1. *Agreement Between Kinematic Tracers* potentials into agreement. We speculate that the two poten-We find that the posterior mass models inferred from the **Evidence for cold dark matter Evidence for cold dark matter**

Dwarf galaxies are dominated by dark matter. non-constant value of a0. The significance for a non-constant rotation curves for both curves for the curve of the curve of the set of the set of the set of the set of the
Set of the set of the C wali galaxie Dwarf galaxie curs de minete. ale dofficient as a function of α by dark matte ero
Tanàna dia kaominina the gomma
The grade ma by dark ma

 $\overline{}$

4. INTERPRETING THE MASS MODELS

 \bullet \bullet

curves, their decomposition into various mass components,

agreement in their mass models. *NGC 5949* The two tracers show reason-

Evidence for cold dark matter

Large Scale Structure

Cosmic Microwave Background

Supernovae

Galaxy clusters are mostly invisible mass (motion of galaxies, gas density and temperature, gravitational lensing)

Evidence for cold dark matter

Galaxy Clusters

:;#44 <=>? @AB!C:8BD E#+)2#F'#2 /45 GHHIJ

 \blacksquare An invisible mass makes the Cosmic \blacksquare Herowaye Dackground Microwave Background fluctuations grow into galaxies (CMB and matter power spectra, or correlation functions)

Cosmic Microwave 2.02205 £ 0.02206 0.02218 ± 0.02216 ± 0.02216 ± 0.02218 ± 0.02216 ± 0.02216 ± 0.022161 ± 0.02216 ± 0.02216 ± 0.022161 ± 0.02216 ± 0.022161 ± 0.02216 ± 0.02216 ± 0.02216 ± 0.02216 ± 0.02216 ± 0.02216 ± *Planck*+WP *Planck*+WP+highL *Planck*+lensing+WP+highL *Planck*+WP+highL+BAO Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits Best fit 68% limits *Planck*+WP *Planck*+WP+highL *Planck*+lensing+WP+highL *Planck*+WP+highL+BAO **Evidence for cold dark matter** ⌦b*h*² 0.022032 0.⁰²²⁰⁵ [±] ⁰.00028 0.022069 0.⁰²²⁰⁷ [±] ⁰.00027 0.022199 0.⁰²²¹⁸ [±] ⁰.00026 0.022161 0.⁰²²¹⁴ [±] ⁰.⁰⁰⁰²⁴ ⌦c*h*² 0.12038 0.¹¹⁹⁹ [±] ⁰.0027 0.12025 0.¹¹⁹⁸ [±] ⁰.0026 0.11847 0.¹¹⁸⁶ [±] ⁰.0022 0.11889 0.¹¹⁸⁷ [±] ⁰.⁰⁰¹⁷

<u>Background fluctuations</u> 100 MC 1.04146 1.04146 1.04146 1.04146 1.04146 1.04146 1.04146 1.04146 1.041
10414 = 1.0414 = 1.04146 1.04146 1.0414 = 1.04146 1.0414 = 1.0414 = 1.0414 = 1.0414

²¹⁷ 117.0 107+²⁰

¹⁴³⇥²¹⁷ 0.⁹¹⁶ > ⁰.850 0.825 0.823+0.⁰⁶⁹

Planck (2013)

Planck Collaboration: Cosmological parameters

 $\mathcal{L} = \{ \mathcal{L} \in \mathcal{L} \}$..., $\mathcal{L} = \{ \mathcal{L} \}$..., $\mathcal{L} = \{ \mathcal{L} \}$..., $\mathcal{L} = \{ \mathcal{L} \}$ *n*^s 0.9619 0.9603 ± 0.0073 0.9582 0.9585 ± 0.0070 0.9624 0.9614 ± 0.0063 0.9611 0.9608 ± 0.0054 ln(1010*A*s). 3.0980 3.089+0.⁰²⁴ 0.⁰²⁷ ³.0959 3.⁰⁹⁰ [±] ⁰.025 3.0947 3.⁰⁸⁷ [±] ⁰.024 3.0973 3.⁰⁹¹ [±] ⁰.⁰²⁵

¹⁰⁰ 152 171 ± 60 209 212 ± 50 204 213 ± 50 204 212 ± 50

¹⁴³ 63.3 54 ± 10 72.6 73 ± 8 72.2 72 ± 8 71.8 72.4 ± 8.0

1000 MC 1.041 + 0.00063 1.04146 1.04130 1.0413

*r*PS

0.077 0.814 ± 0.071 ± 0.071 ± 0.071 ± 0.071 ± 0.071 ± 0.071 ± 0.071 ± 0.071 ± 0.071 ± 0.071 ± 0.071 ± 0.071 ± 0

(Planck Collaboration 2013b).

*A*PS

*A*PS

¹⁰ ⁵⁹.5 59 [±] 10 60.2 58 [±] 10 59.4 59 [±] ¹⁰

vacuum *p*=-*ρ*

Planck (2015) TT,TE,EE+lowP+lensing+ext

 $\overline{1 \text{ pJ}} = \overline{10^{-12} \text{ J}}$ ρ_{crit} =1.68829 *h*² pJ/m³

Evidence for *nonbaryonic* **cold dark matter**

Matter fluctuations uncoupled to the plasma can gravitationally grow into galaxies in the given 13 Gyr

SDSS More than 80% of all matter does not couple to the primordial plasma! Dark matter is non-baryonic

Evidence for *nonbaryonic* **cold dark matter**

BIG BANG NUCLEOSYNTHESIS

- The baryon-to-photon ratio has been the same since \sim 1 minute after the Big Bang.
- Baryons are \le 15.7% of the mass in matter.

Is dark matter an elementary particle?

No known particle can be nonbaryonic cold dark matter!

Particle dark matter

- SM neutrinos
- •lightest supersymmetric particle
- •lightest Kaluza-Klein particle
- sterile neutrinos, gravitinos
- Bose-Einstein condensates, axions, axion clusters
- •solitons (Q-balls, B-balls, ...)
- supermassive wimpzillas

Mass range

 10^{-22} eV (10⁻⁵⁶g) B.E.C.s $10^{-8} M_{\odot}$ (10^{+25} g) axion clusters

(hot) (cold) (cold) (warm) (cold) (cold) (cold) thermal relics non-thermal relics

Interaction strength range

Only gravitational: wimpzillas Strongly interacting: B-balls

QCD Axions

QCD axions as dark matter

Hot

Produced thermally in early universe

Important for ma>0.1eV (fa<108), mostly excluded by astrophysics

Cold

Produced by coherent field oscillations around mimimum of *V*(*θ*) *(Vacuum realignment)*

Produced by decay of topological defects *(Axionic string decays)* Still a very complicated and uncertain calculation! *e.g. Harimatsu et al 2012*

QCD axions as cold dark matterPQ symmetry breaks before inflation ends PQ symmetry breaks after inflation ends PQ symmetry breaking scale PQ symmetry breaking scale 10^{-12} 10^{18} $\theta_i = 0.0001$ $\theta_i = 0.001$ 10^{16} Axion Isocurvature 10^{-9} **Fluctuations** axion mass $\theta_i = 0.01$ f_a [GeV] 10^{14} $_{a}$ [eV] $\frac{84}{10^{-6}}$ $\theta_i = 0.1$ *am* 10^{12} ADMX $\Omega_a > \Omega_c$ $\theta_i = 1$ **HIPA** *Fraction of axion* 10^{10} =10*fa density from decays of topological defects* White Dwarfs Cooling Time 108 10^4 10^6 10^8 10^{10} 10^{12} 10^{14} $m_a = (71 \pm 2)\,\mathrm{\mu eV}\,(1+\alpha_d)^{6/7}$ H_I [GeV] Expansion rate at end of inflation

Visinelli, Gondolo 2009, 2014

Neutrinos

Heavy active neutrinos

than about 40 eV. In the "standard" big-bang

PHYSICAL REVIEW **LETTERS**

VOLUME 39 25 JULY 1977 NUMBER 4

Cosmological Lower Bound on Heavy-Neutrino Masses

Benjamin W. Lee $^{(a)}$ Fermi National Accelerator Laboratory, $^{(b)}$ Batavia, Illinois 60510

and

Steven Weinberg^(c) Stanford University, Physics Department, Stanford, California 94305 (Received 13 May 1977)

The present cosmic mass density of possible stable neutral heavy leptons is calculated in a standard cosmological model. In order for this density not to exceed the upper limit of 2×10^{-29} g/cm³, the lepton mass would have to be greater than a lower bound of the order of 2 GeV.

2 GeV/ c^2 for $\Omega_c = I$

 $T_{\rm{th}}$ mell-known cosmological arguments argument \sim and the existence of \overline{a} Ω code are known to be a metal in Ω $\textsf{Now 4 GeV}/c^2$ for $\Omega_{\rm c}$ =0.25

easily have escaped detection, and are even re-

Cosmic density of massive neutrinos

Sterile neutrino dark matter

Standard model + right-handed neutrinos

Active and sterile neutrinos oscillate into each other.

Sterile neutrinos can be warm dark matter (mass > 0.3 keV)

Dodelson, Widrow 1994; Shi, Fuller 1999; Laine, Shaposhnikov 2008

*ν*MSM *Laine, Shaposhnikov 2008* **Supersymmetric particles**

Supersymmetric dark matter

Neutralinos (the most fashionable/studied WIMP)

Goldberg 1983; Ellis, Hagelin, Nanopoulos, Olive, Srednicki 1984; etc.

Sneutrinos (also WIMPs)

Falk, Olive, Srednicki 1994; Asaka, Ishiwata, Moroi 2006; McDonald 2007; Lee, Matchev, Nasri 2007; Deppisch, Pilaftsis 2008; Cerdeno, Munoz, Seto 2009; Cerdeno, Seto 2009; etc.

Gravitinos (SuperWIMPs)

Feng, Rajaraman, Takayama 2003; Ellis, Olive, Santoso, Spanos 2004; Feng, Su, Takayama, 2004; etc.

Axinos (SuperWIMPs)

Tamvakis, Wyler 1982; Nilles, Raby 1982; Goto, Yamaguchi 1992; Covi, Kim, Kim, Roszkowski 2001; Covi, Roszkowski, Ruiz de Austri, Small 2004; etc.

Neutralino dark matter: impact of LHC

Cahill-Rowell et al 1305.6921

"the only pMSSM models remaining [with neutralino being $m_{Q_1}, m_{Q_3}, m_{u_1}, m_{d_1}$ 100% of CDM] are those with $m_{L_1}, m_{L_3}, m_{e_1}, m_{e_3}$ bino coannihilation" LHC should be expected to improve substantially.

 $\mu, m_A, \tan\beta, A_b, A_t, A_\tau, M_1, M_2, M_3,$ *m*_{Q₁}, $m_{Q_1}, m_{Q_3}, m_{u_1}, m_{d_1}, m_{u_3}, m_{d_3}, m_{d_4}$ those with $m_{L_1}, m_{L_3}, m_{e_1}, m_{e_3}$ \mathbf{z}_1 , and \mathbf{z}_2 and \mathbf{z}_1 included here as well as the extrapolations to 14 TeV so that the coverage provided by the covera pMSSM (phenomenological MSSM)

Neutralino dark matter: impact of LHC

The CMSSM* is in dire straights, but there are many supersymmetric models

**Constrained Minimal Supersymmetric Standard Model*

Neutralino dark matter: impact of LHC

The CMSSM* is in dire straights, but there are many supersymmetric models

**Constrained Minimal Supersymmetric Standard Model*

The forbidden fruit

Searches for particle dark matter

Dark matter creation with particle accelerators

Searching for the conversion

The ATLAS detector Particle production at the Large Hadron Collider

Higgs-portal dark matter: impact of LHC plete te expressions. For the present purpose of the present purpose of the present purpose of the present pur \boldsymbol{m} atter: imnact of the \boldsymbol{C} sponding to 60,000 kg-d, 5-30 keV and 45% eciency).

Discovery of 125 GeV Higgs boson constrains models with Higgs boson mediator between dark and ordinary matter *^H*; therefore, the ratio *^r* ⁼ (*^H* !)*/*SI *^p* depends **Discovery of 125 G** be *M^H* = 125 GeV). This allows us to relate the invisi-Higgs hosen constrains models with compete with the X_ENO_N

Djouadi, Falkowski, Mambrini, Quevillon 2012

Indirect detection of particle dark matter

The principle

Dark matter particles transform into ordinary particles, which are then detected or inferred

Indirect detection of particle dark matter

The principle

Dark matter particles transform into ordinary particles, which are then detected or inferred

Neutrinos from WIMP annihilation in the Sun <u>LLVII</u> (b)

Best limits on WIMP-proton spin-dependent scattering cross section 1234 - Personald Per roton cpin de

 $\frac{1}{2}$ and $\frac{1}{2}$, the start of an $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ *Aarsten et al (IceCube) 2012*

Indirect detection of particle dark matter

The principle

Dark matter particles transform into ordinary particles, which are then detected or inferred

Gunn, Lee, Lerche, Schramm, Steigman 1978; Stecker 1978

HEAT BESS

AMS **GAPS**

PAMELA

The principle of direct detection

Dark matter particles that arrive on Earth scatter off nuclei in a detector

Goodman, Witten 1985

Low-background underground detector
Direct WIMP searches (2015)

Billard et al 2013, Snowmass 2013, LUX 2013, SuperCDMS 2014

Direct WIMP searches (2015) Wood-best limit food chapter **XENON100 Results: Spin-Dependent**

 \overline{a} Spin-dependent @ 45 GeV/c2 **interactions**

Expected event rate is small Expected event rate is small

Expediately
D WIMP Spectrum WIMP spectrum **Expected**

~1 event/kg/year (nuclear recoils)

Expected event rate is small **Expected event rate is small**

Measured Expected Expediately
D Measured WIMP spectrum S banana spectrum Spectru WU spectrum ina spectrum WIMP Spectrum Banana Spectrum $1\frac{\times 10^{-3}}{1}$ Hoeling *et al* Am.J.Phys. 1999, 67, 440. Hoeling *et al* Am.J.Phys. 1999, 67, 440. 1200 $Mass = 20$ GeV With Banana 1000 σ_{N,SI} = 10⁻⁴⁵ cm² – 40K 40K 0.8 10 zeptobarn dRidE [kg keV d]⁻¹
C
A
A 800 Counts 600 400 200 0.2 Without Banana Ω $\overline{\mathfrak{o}}_{\mathfrak{o}}^{\mathfrak{l}}$ 720 760 800 600 680 640 10 20 30 40 E [keV] Channel Number Channel Number

~1 event/kg/year

~100 events/kg/second (nuclear recoils) (electron recoils)

Expected event rate is small **Expected event rate is small**

~1 event/kg/year

~100 events/kg/second (nuclear recoils) (electron recoils)

Confusion of the mind

Evidence for cold dark matter particles?

GeV γ-rays

Hooper et al *2009-14*

3.5 keV X-ray line

Bulbul et al 2014

Annual modulation $\overline{}$

Drukier, Freese, Spergel 1986

Positron excess

Adriani et al 2009; Ackerman et $\overline{10011}$ experiments $\overline{10010}$. at zut is Aguilar et al zut 3 systematic uncertainty) is shown as a shaded band. *al 2011; Aguilar et al 2013*

Gamma-rays from dark matter?

Gamma-rays from dark matter

$$
\begin{pmatrix}\n\gamma - \text{ray} \\
\text{flux}\n\end{pmatrix} = \begin{pmatrix}\n\text{particle} \\
\text{physics}\n\end{pmatrix} \times \begin{pmatrix}\n\text{astrophysics} \\
\text{annihilation}\n\end{pmatrix}
$$
\n
$$
\frac{d^2\phi}{d\Omega dE} = \frac{\langle \sigma v \rangle}{8\pi m_\chi^2} \frac{dN_\gamma}{dE} \times \int_{l.o.s} \rho^2 ds
$$
\n
$$
\text{decay} \quad \frac{d^2\phi}{d\Omega dE} = \frac{1}{4\pi \tau_\chi m_\chi} \frac{dN_\gamma}{dE} \times \int_{l.o.s} \rho ds
$$

Gamma-rays from WIMP annihilation

J factor

Extragalactic

- nearly isotropic
- visible near Galactic Poles
- angular information
- galaxy clusters?

Kuhlen, Diemand, Madau 2007

Dwarf Spheroidal Galaxies

- otherwise dark (no *γ*-ray emission)

- harbor small number of stars

Gamma-rays from dark matter

Astrophysical uncertainty in the J factors of dwarf spheroidals

Geringer-Sameth, Koushiappas, Walker 1408.0002

Large statistical and systematic uncertainties

1 GeV gamma-ray excess?

Goodenough, Hooper; Vitale, Morselli et al 2009; Hooper, Goodenough; Boyarsky, Malyshev, Ruchayskiy; Hooper, Linden 2011; Abazajian, Kaplinghat 2012; Gordon, Macias 2013; Abazajian, Canac, Horiuchi, Kaplinghat; Daylan et al; Calore, Cholis, Weniger 2014

0.5-1 GeV residual Find residual. Fit model of known emission.

Vitale, Morselli et al 2009 Daylan et al 2014 Murgia et al 2014

5-20 GeV residual + TS>25 point sources

1 GeV gamma-ray excess?

• Dark matter annihilation

Goodenough, Hooper 2014; Hooper, Goodenough; Hooper, Linden 2011; Abazajian, Kaplinghat 2012; Abazajian, Canac, Horiuchi, Kaplinghat; Daylan et al; Calore, Cholis, Weniger 2014; ……… Possible for specific WIMP and dark halo models

• Burst(s) of leptonic activity about 1 Myr ago $\frac{1}{2}$ ³ *Petrovic et al 2014; Cholis et al 2015; ……… Possible with suitable diffusion parameters* $\begin{array}{c} \frac{2\pi}{3} \end{array}$ **z** about Fright ago template, motivated by the hypothesis that the previilating dark matter dark matter temperature. In particular, α

• Millisecond pulsars

Wang et al 2005; Abazajian 2011; Gordon, Macias 2013; Hooper et al 2013; Yuan, Zhang 2014; Calore et al 2014; Cholis et al 2014; Petrovic et al 2014; Lee et al 2014; *Bartels et al 2014* halo profile, we find that the inclusion of the dark matter plis et al zu i 4; petrovic et al z the left frame of \mathcal{F} frame of \mathcal{F} \mathfrak{c} are \mathfrak{c} of \mathfrak{c} are found to favor \mathfrak{c} $\left| \int_{a} \right|_{a} = \left| \int_{a} d\mu \right|_{a}$ of $\left| \int_{a} \right|_{a}$ is that for the full state for τ ,

Can be tested by one-point statistics or wavelet analysis statistics of wavelet and of describing the sky to the level of Poisson noise. That ϵ for the best-fit value of = 1*.*26. While no significant emission is absorbed by this template at energies above

1 GeV gamma-ray excess?

Dark matter or point sources?

Gamma-rays from dark matter

Upper limits on the WIMP annihilation cross section from dwarf spheroidal galaxies and Galactic Center

Gamma-rays from dark matter

Upper limits on the WIMP annihilation cross section from dwarf spheroidal galaxies and Galactic Center

Positrons from dark matter?

Excess in cosmic ray positrons

High energy cosmic ray positrons are more than expected

Adriani et al. [PAMELA ,2008

Ackernmann et al [Fermi-LAT] 2011

electron plus positron spectrum (3.08±0.05) [19, 20]. *Accardo et al [AMS-02] 2014*

Excess in cosmic ray positrons 2 V. DOSTITOIRS COMPANY

Dark matter? Pulsars? Secondaries from extra primaries?

Bergstrom, Edsjo, Zaharijas 2009 Bergstrom, Easjo, Zanarijas 2009

Blasi 2 $\frac{1}{2}$ *Blasi 2009*

$\sqrt{2}$ 0.10 $\qquad \qquad +$ $\frac{e^+}{e^+}$ ▲HEAT 94+95 **CAPRICE 94 AMS 01** 3 *pulsars* **OPAMELA 08** 0.01 $10¹$ 10° $10²$ $E(GeV)$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ dash-dot line - $E_{\text{max}} = 10 \text{TeV}$ dotted line $-E_{\text{max}} = 3 \text{TeV}$ $\frac{1}{\sqrt{2}}$ as the contract pulsars and supernova remnants) can account $\frac{1}{\sqrt{2}}$ and supernova remnants) can account $\frac{1}{\sqrt{2}}$ for the observed spectral features, as well as for the positron ratio measurements $\frac{1}{\sqrt{2}}$ (sec. 3.1): no additional exotic source is thus required to fit the data, although $\frac{1}{\sqrt{2}}$ the normalization of the fluxes from such astrophysical objects remains a matter $\overline{}$ accoloration, $\overline{}$ **acceleration near source** $t_{\rm 10}$ at the observed excess high-energy et originates from data matter from dat $F(GeV)$

 \mathcal{L} sets very stringent constraints on the dominant dark matter and dominant dark matter and dominant dark matter and dominant data \mathcal{L}

Grasso et al [Fermi-LAT] 2009

Excess in cosmic ray positrons

The safe way: use the AMS spectrum purely as upper limit on positrons from WIMP dark matter.

Bergstrom et al 2013

X-rays from dark matter?

$\mathbf{G}_{\mathbf{F}}$ **X-rays from dark matter?**

−
− Perseus) 2 T LeV V seconding lease began seconding to An unidentified 3.5 keV X-ray line has been reported in stacked images of 73 galaxy clusters and in the Andromeda galaxy

X-rays from dark matter?

Radiative decay of sterile neutrinos $\nu_s \rightarrow \gamma \nu_a$

$$
\textbf{X-ray line} \quad E_{\gamma} = \frac{1}{2} m_s
$$

 $m_v = 7.1$ keV $\sin^2(2\theta) = 7 \times 10^{-11}$

Figure 4: The central region of Fig. 3, M¹ = 0.3 ... 100.0 keV, compared with regions excluded *Laine, Shaposhnikov 2008*

Direct detection of dark matter?

Annual modulation in direct detection

• The revolution of the Earth around the Sun modulates the WIMP event rate

Drukier, Freese, Spergel 1986

• DAMA observes such kind of modulation

Direct evidence for dark matter particles?

The DAMA signal seems incompatible with other experiments

DAMA modulation

Model Independent Annual Modulation Result

DAMA/NaI + **DAMA/LIBRA-phase1** Total exposure: 487526 kg×day = **1.33 ton**×**yr**

No systematics or side reaction able to account for the measured modulation amplitude and to satisfy all the

Comparison between **single hit residual rate (red points)** and **multiple hit residual rate (green points)**; Clear modulation in the single hit events; No modulation in the residual rate of the multiple hit events **A=-(0.0005±0.0004) cpd/kg/keV**

The data favor the presence of a modulated behaviour with all the proper features for DM particles in the galactic halo at about 9.2σ C.L.

Belli, IDM2014 *Belli, IDM2014*

DAMA modulation

Model Independent Annual Modulation Result

DAMA/NaI + **DAMA/LIBRA-phase1** Total exposure: 487526 kg×day = **1.33 ton**×**yr**

No systematics or side processes able to quantitatively account for the measured modulation amplitude and to simultaneously satisfy the many peculiarities of the signature are available.

DAMA modulation

Model Independent Annual Modulation Result

- N_c
-
- ev
-
- $R(t)$
-
- $\frac{S_{m}}{2} \frac{(cpd/kg/keV)}{2}$

"Public? What does it mean?"

Pierluigi Belli at IDM2014

⁰ ⁰ ⁰ ⁰ *R*(*t*) *S S* cos *t t Z* sin *t t S Y* cos *t t* = + *^m* ^ω − + *^m* ^ω − = + *^m* ^ω −

amplitude and to simultaneously satisfy the many peculiarities of the signature are available.

 $-t^*$

 $0.03 0.04$

 $3)2648$

That which does not kill us makes us stronger

Make no assumptions

All particle physics models

- Consider all possible interactions between dark matter and standard model particles
- This program has been carried out in some limits (e.g., non-relativistic conditions, heavy mediators)

All astrophysical models

- Halo-independent methods of analysis have been developed
- Ideally they require no assumption on the astrophysical density and velocity distributions of dark matter particles

All particle physics models

Write down and analyze all possible WIMP interactions with ordinary matter

Effective operators

if mediator mass ≫ *exchanged energy*

Four-particle effective operator

Interference is important although often, but not always, neglected. There are many possible operators. Long(ish) distance interactions are not included.

Effective operators: LHC & direct detection

Table of effective operators relevant for the collider/direct detection connection *Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu 2010*

Effective operators: LHC & direct detection

LHC limits on WIMP-quark and WIMP-gluon interactions are competitive with direct searches

Beltran et al, Agrawal et al., Goodman et al., Bai et al., 2010; Goodman et al., Rajaraman et al. Fox et al., 2011; Cheung et al., Fitzptrick et al., March-Russel et al., Fox et al., 2012.......

 $\frac{1}{2}$ rators (interf Spin of operators (interference) and *Complete theories contain sums not-so-heavy mediators (Higgs)*

 $\overline{}$

Fox, Harnik, Primulando, Yu 2012

of particles of spin one or less (i.e. at most quadratic in either *S*~ or ~*v*). In any Lorentz-invariant [~]*v*? *· ^S*~*,* [~]*v*? *· ^S*~*^N , iS*~ *·* (*S*~*^N* ⇥ [~]*q*)*.* **Effective operators: direct detection**

All short-distance operators classified local quantum field theory, CP-violation is equivalent to T-violation, so let us first consider A respect to the respect time respect that σ T operators in the first line of eq. (4) are parity conserving, which is the second line those of the second line that second line the second line of the second line \mathcal{L}

ator's crassined.
Fitzpatrick et al 2012

1, $\vec{S}_{\chi} \cdot \vec{S}_{N}$, v^{2} , $i(\vec{S}_{\chi} \times \vec{q}) \cdot \vec{v}$, $i\vec{v} \cdot (\vec{S}_{N} \times \vec{q})$, $(\vec{S}_{\chi} \cdot \vec{q})(\vec{S}_{N} \cdot \vec{q})$ $i\vec{S}_{N} \cdot \vec{q}$, $i\vec{S}_{\chi} \cdot \vec{q}$, $\vec{v}^{\perp} \cdot \vec{S}_{\chi}, \quad \vec{v}^{\perp} \cdot \vec{S}_{N}, \quad i\vec{S}_{\chi} \cdot (\vec{S}_{N} \times \vec{q}).$ $(i\vec{S}_{N} \cdot \vec{q})(\vec{v}^{\perp} \cdot \vec{S}_{\chi}), \quad (i\vec{S}_{\chi} \cdot \vec{q})(\vec{v}^{\perp} \cdot \vec{S}_{N}).$

All nuclear form factors classified and the relevant question is a state of the relevant question is a state o

Table 1: The response dark-matter nuclear response functions, their leading order behavior,

^J;*p,n*) arise in CP conserving interactions (due to the $T_{\rm TM}^{\rm el5}$: Axial **model** *Fitzpatrick et al 2012* nuclear
Effective operators: direct detection

Experimental limits on single operators… *Schneck et al (SuperCDMS) 2015*

Effective operators: direct detection

Combined analysis of short-distance operators *Catena, Gondolo 2014*

Effective operators: direct detection

Combined analysis of short-distance operators *Catena, Gondolo 2014*

All astrophysics models

Do not assume any particular WIMP density or velocity distribution

DM-nucleus elastic scattering

Nuclear recoil

Astrophysics model

$$
\begin{pmatrix} \text{event} \\ \text{rate} \end{pmatrix} = \begin{pmatrix} \text{detector} \\ \text{response} \end{pmatrix} \times \begin{pmatrix} \text{particle} \\ \text{physics} \end{pmatrix} \times \begin{pmatrix} \text{astrophysics} \\ \text{invisics} \end{pmatrix}
$$

Dark matter flux on Earth

$$
\text{(astrophysics)} = \eta(v_{\min}, t) \equiv \rho_{\chi} \int_{v > v_{\min}} \frac{f(\mathbf{v}, t)}{v} d^3v
$$
\n
$$
\text{(astrophysics)} = \eta(v_{\min}, t) \equiv \rho_{\chi} \int_{v > v_{\min}} \frac{f(\mathbf{v}, t)}{v} d^3v
$$
\n
$$
v_{\min} = (ME_R/\mu + \delta) / \sqrt{2ME_R}
$$

Astrophysics model: local density

Measurement I Historic measures
 $\frac{1}{2}$ The dark matter density near the Solar System is known reasonably well

Read at IDM 2014 \sim comparing the rotation curve implies a near-spherical MW $_{\rm 2.5}$

0 150 300 450 600 **snh** -450 -225 <mark>-</mark>225 <mark>-</mark>225 -225 **bide** 1 × 10-3 1 × 10-3 **Astrophysics model: velocity distribution**

We know very little about $\frac{1}{10}$ the dark matter velocity
distribution near the Sun distribution near the Sun 1

Figure 2. Top four panels: Velocity distributions in a 2 kpc box at the Solar

Odenkirchen et al 2002 (SDSS) SDSS, 2MASS, SEGUE,……. *Streams of stars have been observed in the galactic halo*

Cosmological N-Body simulations including baryons are challenging but underway

Astrophysics model: velocity distribution

Standard Halo Model

truncated Maxwellian

$$
f(\vec{v}) = C e^{-|\vec{v} + \vec{v}_{\text{obs}}|/\bar{v}_0^2} \Theta(v - v_{\text{esc}})
$$

 $\overline{\infty}$

The spherical cow of direct WIMP searches Gelmini

 F_1 g. F_2 . The 90% confidence up to F_1 *Agnese et al (SuperCDMS) 2014*

Astrophysics-independent approach

Fox, Liu, Wiener 2011; Gondolo, Gelmini 2012; Del Nobile, Gelmini, Gondolo, Huh 2013-14

Astrophysics-independent approach

Gondolo Gelmini 2012

The measured rate is a "weighted average" of the astrophysical factor.

Every experiment is sensitive to a "window in velocity space."

Spin-independent isoscalar interactions

$$
\sigma_{\chi A}=A^2\sigma_{\chi \rm p} \mu_{\chi A}^2/\mu_{\chi \rm p}^2
$$

Astrophysics-independent approach

Halo modifications alone cannot save the SI signal regions from the Xe and Ge bounds

CDMS-Si event rate is similar to yearly modulated rates

> Still depends on particle model

Del Nobile, Gelmini, Gondolo, Huh 2014

In the next episodes

In the next episodes..... **DAMA's revenge?**

In the next episodes..... **Direct check on DAMA**

Experiments have been proposed that can directly check the DAMA modulation using the same target material

DM-ICE, ANAIS, KIMS-NaI,…

In the next episodes..... **Giant direct detectors**

SuperCDMS, LZ, XENON1T, XENONnT, Darwin,

In the next episodes..... **High-energy γ-rays**

Doro, 2014

In the next episodes..... **Precision cosmic rays**

AMS (Alpha Magnetic Spectrometer)

Isotopic ratios measured to better than 1% precision up to Fe and ~100 GeV/nucleon allow for better Galactic cosmic ray models

In the next episodes..... **Precision cosmic rays**

For example, use of the new precise AMS-02 proton and helium spectra shows no unambiguous evidence for a significant antiproton excess over the expectation for secondary antiprotons.

Giesen et al 2015

University of Hawaii

W. Koch J. Lopez, H. Tomita

Royal Holloway (UK) G. Drain, R. Eggleston, P. Gianga, J. Monzoc*

Figure 12 That direct detection e direction of nuclear recoil $\frac{1}{5}$

FRAME RD efforts E E-

- DRIFT

60Torr

 \mathbb{R}

- Dark Matter TPC
- NEWAGE
- MIMAC
	- $-D3$

readout for tracking

& backgrounds

- Emulsion Dark Matter Search
- **EXEC** Columnar recombination

DMTPC

neutroⁿ

beam

Only ~10 events needed to confirm extraterrestrial signal

In the next episodes..... **WIMP astronomy**

Synopsis

- Fifty shades of dark
	- There is evidence for nonbaryonic cold dark matter.
	- *There are many candidates for nonbaryonic dark matter particles.*
- The forbidden fruit
	- *Search DM particles through production, scattering, and annihilation/decay.*
	- *Interaction rates are very small. (No bananas in the lab.)*
- Confusion of the mind
	- *Some experiments claim dark matter detection while others exclude it.*
- That which does not kill us makes us stronger
	- *Move to consider all possible WIMP-SM currents.*
	- *Do not assume any specific dark halo model.*
- In the next episodes
	- *DAMA vs giant direct detectors, γ-rays, precision cosmic rays, WIMP astronomy, etc.*