

Double beta decay: an experimental overview

Laura Baudis
University of Zurich

Invisibles Workshop Madrid, June 24, 2015

Some open questions in neutrino physics

- What is the nature of neutrinos: Dirac or Majorana particles?
- What are their masses: absolute scale and ordering?

Double beta decay

- A second-order process that can only be detected if first order beta decay is energetically forbidden
- Proposed in 1935 by Maria Goeppert-Mayer
- Observed in 11 nuclei, $T_{1/2} > 10^{18}$ y; 48 Ca, 76 Ge, 82 Se, 96 Zr, 100 Mo, 116 Cd, 128 Te, 130 Te, 136 Xe, 150 Nd, 238 U

$$(A, Z+1)$$

$$(A, Z)$$

$$\beta\beta$$

$$(A, Z+2)$$

Neutrinoless double beta decay

- Extremely rare process, $T_{1/2} > 10^{22} \text{ y}$
- Proposed in 1937 by Ettore Majorana; not yet observed
- Requires massive Majorana neutrinos & lepton number violation*

L = 0

In an atomic nucleus:

^{*} In the simplest interpretation -> light neutrinos and SM interactions

^{*} New mechanism with heavy particles in general subdominant because of smaller NME

Which nuclei can decay via $0\nu\beta\beta$?

- Even-even nuclei
- Natural abundance is low (except ¹³⁰Te)
- Must use enriched material

$$(A, Z+1)$$

$$(A, Z)$$

$$\beta\beta$$

$$(A, Z+2)$$

Candidate*	Q [MeV]	Abund [%]
⁴⁸ Ca -> ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge -> ⁷⁶ Se	2.040	7.8
⁸² Se -> ⁸² Kr	2.995	9.2
⁹⁶ Zr -> ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo -> ¹⁰⁰ Ru	3.034	9.6
¹¹⁰ Pd -> ¹¹⁰ Cd	2.013	11.8
¹¹⁶ Cd -> ¹¹⁶ Sn	2.802	7.5
¹²⁴ Sn -> ¹²⁴ Te	2.228	5.64
¹³⁰ Te -> ¹³⁰ Xe	2.530	34.5
¹³⁶ Xe -> ¹³⁶ Ba	2.479	8.9
¹⁵⁰ Nd -> ¹⁵⁰ Sm	3.367	5.6

How do we look for the decay?

- Observe the 2 final-state electrons
- Expect a sharp "peak" at the Q-value of the decay
- Excellent energy resolution is essential for a discovery experiment

$$Q = E_{e1} + E_{e2} - 2m_{e}$$

What is the observable decay rate?

$$\Gamma^{0\nu} = \frac{1}{T_{1/2}^{0\nu}} = \frac{G^{0\nu}g_A^4|M^{0\nu}|^2}{G^{2}} = \frac{|m\beta\beta|^2}{m_e^2}$$

with the effective Majorana neutrino mass:

$$|m_{\beta\beta}| = |U_{e1}^2 m_1 + U_{e2}^2 m_2 e^{i(\alpha_1 - \alpha_2)} + U_{e3}^2 m_3 e^{i(-\alpha_1 - 2\delta)}|$$

- → a coherent sum over mass eigenstates with potentially CP violating phases
- \Rightarrow = a mixture of m₁, m₂, m₃, proportional to the U_{ei}², with α_1,α_2 = Majorana CPV phases
- U_{ei} = matrix elements of the PMNS-Matrix, m_i = eigenvalues of the neutrino mass matrix

Matrix elements for $0\nu\beta\beta$

- Past years: improved agreement among the various methods
- Still spread by a factor 2-3 => uncertainty of ~ 4 10 in T_{1/2}

Effective Majorana neutrino mass

Isotopes and sensitivity to $0\nu\beta\beta$

Isotopes have comparable sensitivities in terms of rates per unit mass

R. G. H. Robertson, Mod. Phys. Lett. A28 (2013) 1350021

Experimental requirements

• Experiments measure the half life of the decay, T_{1/2} with a sensitivity (for non-zero background)

$$T_{1/2}^{0\nu} \propto a \cdot \epsilon \cdot \sqrt{\frac{M \cdot t}{B \cdot \Delta E}}$$

Minimal requirements:

large detector masses
high isotopic abundance
ultra-low background noise
excellent energy resolution

Additional tools to distinguish signal from background:

event topology pulse shape discrimination particle identification

Experimental techniques

Double beta experiments in underground labs

Overview of (selected) experiments

Experiment	Isotope	Isotopic mass	Start of operation
CUORE-0 CUORE	¹³⁰ Te	11 kg 210 kg	2013 (running) 2015
EXO-200 nEXO	¹³⁶ Xe	200 kg 5 t	2011 2018 (?)
GERDA phase I GERDA phase II	⁷⁶ Ge	17 kg 40 kg	2011 2015
KamLAND-Zen	¹³⁶ Xe	300 kg	2012 (running)
Majorana	⁷⁶ Ge	30 kg	2015
NEXT	¹³⁶ Xe	100 kg	2016
SNO+	¹³⁰ Te	800 kg	2016
SuperNEMO	⁸² Se	7 kg	2016

HPGe diodes: GERDA

 $m_{\beta\beta} < 0.2 - 0.4 \,\mathrm{eV}$

- Phase II: 30 (20.5 kg) new ^{enr}BEGe detectors at LNGS
- Liquid argon light instrumentation for active veto installed/tested
- New run to start in summer 2015
- Background goal: ≤ 10⁻³ events/(keV kg yr)
- Explore T_{1/2} values in the 10²⁶ yr range

HPGe diodes: Majorana demonstrator

- 29 kg enriched Ge detectors (87%)
- A prototype module was installed and is taking data since July 2014
- Module 1 (~1/2) of enriched detectors to start operation summer 2015
- Assembly of strings for module 2 is proceeding well
- Completion and starting of operation by end of 2015
- Explore T_{1/2} values in the 10²⁶ yr range

Thermal Sensor

Energy

Release

Absorber

TeO₂ bolometers: CUORE

- CUORE-0: array of 52 crystals; 9.8 kg-yr exposure, FWHM = 5.1 keV
- Recent results: $T_{1/2} > 2.7 \times 10^{24}$ y (90% CL); $T_{1/2} > 2.7 \times 10^{24}$ y (90% CL) combined with Cuoricino
- CUORE: all 988 crystals (206 kg ¹³⁰Te) built and assembled in towers
- Cryostat commissioning underway; detector installation in 2015
- Next step: CUPID = CUORE detectors + light read-out for alpha suppression

¹³⁰Te in liquid scintillator: SNO+

- First phase: 0.3% natural Te (~ 800 kg ¹³⁰Te)
- Detector and cavity being filled with water
- Start LS fill in 2016
- Load 0.3% Te in 2017
- Then upgrade PMTs and 3% load with the goal to cover the inverted hierarchy scenario

Expected backgrounds in SNO+

Liquid xenon TPC: EXO and nEXO

- Dual-phase time projection chamber
- 110 kg LXe (80.6% ¹³⁶Xe) in active volume
- After WIPP accident: ongoing cleanup/repair effort; cooling & filling LXe TPC in summer 2015, data taking in fall 2015
- nEXO: 5 tonnes enriched LXe
- Proposed location SNOLAB cryopit

High pressure xenon TPC: NEXT

- NEXT-100: 100 kg ¹³⁶Xe (90% enriched) HP Xe TPC
- Tracking capabilities and < 1% (FWHM) resolution
- Under construction (vessel, sensors, gas system etc)
- Installation and commissioning at LSC by 2017: explore the effective Majorana mass to 100 meV
- 10 kg prototype in deployment at LSC (validate bg model)

¹³⁶Xe in liquid scintillator: KamLAND-Zen

- Mini-balloon with ¹³⁶Xe-loaded LS in KamLAND
- Phase 1+2 (179 kg + 383 kg):
- $T_{1/2} > 2.6 \times 10^{25} \text{ y (90\% CL)}$

$$m_{\beta\beta} < 0.14 - 0.28 \,\text{eV}$$

- Next phase: new mini-balloon construction in summer 2015
- Larger LS volume: 600-800 kg ¹³⁶Xe
- Lower backgrounds
- Sensitivity: 2 x 10²⁶ yr after 2 years exposure
- Goal: cover the inverted hierarchy region

Scintillating bolometers: AMoRE/LUMINEU/LUCIFER

- Measure both heat and light: particle discrimination and background rejection
- AMoRE: ⁴⁰Ca¹⁰⁰MoO₄ in 3 stages 1.5-10-200 kg of crystals
- LUMINEU: Zn¹⁰⁰MoO₄ 1 kg 10 kg (LUCINEU)

Tracking: SuperNEMO

- Separate tracker, calorimeter and source
- Sources: 82Se (150Nd, 48Ca), 100 kg
- Aim: $T_{1/2} > 10^{26} \text{ yr}$
- Demonstrator: 7 kg 82 Se, $T_{1/2} > 6.6 \times 10^{24} \text{ yr}$
- Status: in assembly, first demonstrator module in 2016

Outlook: the search continues

- Ton-scale experiments are required to explore the inverted mass hierarchy scale
- Several technologies are moving towards this scale with ultra-low backgrounds
- It remains to be seen which ones can be upgraded to 10-100 ton scale and explore the normal mass hierarchy scale

End

Backgrounds

- Muon induced backgrounds
- Natural radioactivity: ²³⁸U, ²³²Th, ⁴⁰K, Radon, (alpha,n), (n,gamma) etc
- Anthropogenic radioactivity: 110mAg, 207Bi,
- Cosmogenic activation of detector components: 60Co, 42Ar, 68Ge,
- 8B solar neutrinos
- 2 neutrino double beta decay

Example: Ge sensitivity with/without backgrounds

Background reduction

- Ultra-pure materials
- Energy resolution
- Event topology
- Pulse shape discrimination
- Particle identification