Direct Neutrino Mass Measurements

Susanne Mertens Invisibles 2015

100 1

Alexander von Humboldt Stiftung/Foundation HELMHOLTZ

ASSOCIATION

Karlsruhe Institute of Technol

V.N. Aseev et al., Phys. Rev. D 84 (2011) 112003 C. Kraus et al., Eur. Phys. J. C 40 (2005) 447

- Neutrinos excluded as Dark Matter
- Distinguish between hierarchical and degenerate scenario, impact on structure formation

- Neutrinos excluded as Dark Matter
- Distinguish between hierarchical and degenerate scenario, impact on structure formation
- Resolve neutrino mass hierarchy

General Idea

- A kinematic determination of the neutrino mass
- No model dependence on cosmology or nature of mass

3 Experimental Efforts

Karlsruhe Tritium Neutrino Experiment

- International Collaboration: 120 members
- 15 institutions in 5 countries: D, US, UK, CZ, RUS
- Reference v-mass sensitivity: $m(v_e) = 200 \text{ meV}$, after 3 years

KATRIN Overview

MAC-E Filter with < 1 eV energy resolution and large angle acceptance

Spectrometer system

KATRIN Source Status

Windowless gaseous tritium source

 \rightarrow delivery this year

Differential pumping section

 \rightarrow Commissioning at KIT

Cryogenic pumping section

 \rightarrow Delivery this year

Source System integrated in mid-2016

2011: fully commissioned large Aircoil system

Compensation of earth magnetic field Fine shaping of low magnetic field 2012: Inner electrode system (24.000 wires) completely mounted (precision: 200 µm!)

> Electric shielding Fine shaping of electric potential

е

KATRIN Spectrometer Status

2015: 2nd measurement phase completed

Spectrometer works as MAC-E Filter

KATRIN Spectrometer Status

2015: 2nd measurement phase completed

- Spectrometer works as MAC-E Filter
- > Liquid nitrogen cooled baffles eliminate Radon-induced background with an efficiency of $\varepsilon = (97 \pm 2)\%$

N. Wandkowsky et al., J. Phys. G 40 (2013) 8 S. M. et al., Astropart. Phys. 41 (2013) 52

KELEY

S. M. *et al.* JCAP 1502 (2015) 02, 020, S. M. *et. al.* Phys.Rev. D91 (2015) 4, 042005,

3 Experimental Efforts

Spectroscopy (KATRIN)

Calorimetry (HOLMES, ECHO &NUMECS)

Drexlin, V. Hannen, S. M., C. Weinheimer, Adv. High Energy Physics 2013, Article ID 293986, (2013)

Electron Capture on Holmium

Holmium spectrum

- Endpoint: 2.3 2.8 keV (small endpoint preferred)
- Half live: 4500 years

Endpoint of Holmium spectrum

- Endpoint: 2.3 2.8 keV
- Half live: 4500 years

Calorimetric measurement

Advantages:

- Source = detector
- All energy is detected

Challenges:

- $\Delta E_{FWHM} < 10 \text{ eV}$
- τ_{risetime} < 1 µs to avoid background due to pile-up
- Sufficient isotope production

Calorimetric measurement

Advantages:

- Source = detector
- All energy is detected

Challenges:

- $\Delta E_{FWHM} < 10 \text{ eV}$
- τ_{risetime} < 1 µs to avoid
 background due to pile-up
- Sufficient isotope production
- Scalability

Heidelberg (Univ., MPI-K), U Mainz, U Tübingen, TU Dresden

U Bratislava, INR Debrecen, ITEP Moscow, PNPI St Petersburg, IIT Roorkee, Saha Inst. Kolkata

- A. Fleischmann et al., *AIP Conf. Proc.* 1185, 571, (2009)
- L. Gastaldo et al., Nucl. Inst. Meth. A, 711, 150-159 (2013)
- P. C.-O. Ranitzsch et al., JLTP 167, 1004 (2012)
- S. Kempf et al, JLTP 10.1007/s10909-013-1041-0

The ECHO Experiment

- Metallic magnetic calorimeters (MMC)
- Fast rise times (τ = 130 ns), good energy resolutions (7.6 eV @ 6keV), and linearity (1%) demonstrated

ECHO first prototype

A. Fleischmann et al., *AIP Conf. Proc.* 1185, 571, (2009) L. Gastaldo et al., Nucl. Inst. Meth. A, 711, 150-159 (2013) P. C.-O. Ranitzsch et al., JLTP 167, 1004 (2012) S. Kempf et al, JLTP *10.1007/s10909-013-1041-0*

The ECHO Experiment

- Metallic magnetic calorimeters (MMC)
- Fast rise times (τ = 130 ns), good energy resolutions (7.6 eV @ 6keV), and linearity (1%) demonstrated
- 2 new chips, each with 16 pixel detector arrays, started test 4 weeks ago

- ✓ High purity 163 Ho source
- ✓ Increase activity per pixel (0.2 Bq)
- Better understanding of lineshapes

A. Fleischmann et al., *AIP Conf. Proc.* 1185, 571, (2009) L. Gastaldo et al., Nucl. Inst. Meth. A, 711, 150-159 (2013) P. C.-O. Ranitzsch et al., JLTP 167, 1004 (2012) S. Kempf et al, JLTP *10.1007/s10909-013-1041-0*

The ECHO Experiment

- Metallic magnetic calorimeters (MMC)
- Fast rise times (τ = 130 ns), good energy resolutions (7.6 eV @ 6keV), and linearity (1%) demonstrated
- 2 new chips, each with 16 pixel detector arrays, started test 4 weeks ago
- Microwave Multiplexing techniques (RF-SQUID)

A. Fleischmann et al., AIP Conf. Proc. 1185, 571, (2009)

L. Gastaldo et al., Nucl. Inst. Meth. A, 711, 150-159 (2013)

P. C.-O. Ranitzsch et al., JLTP 167, 1004 (2012)

S. Kempf et al, JLTP 10.1007/s10909-013-1041-0

U Milano-Bicocca, INFN Milano/Genova/Roma, U Lisboa, U Miami, NIST, JPL

- Transition-Edge Sensors (TES)
- Microwave Multiplexing with Kinetic Inductance Detectors (MKIDs).
- Successful funding received for one thousand channel Ho detector experiment

The NuMecs Experiment

Los Alamos, NIST, U Madison and others

- Transition-Edge Sensors (TES)
- Good energy resolution (6 eV @ 6 keV with 55Fe surrogate) demonstrated.
- Focus on high purity ¹⁶³Ho production – proton activation of dysprosium

J.W. Engle et al. NIM B 311 (2013) 131–138 http://fsnutown.phy.ornl.gov/fsnufiles/positionpapers/ FSNu_Project8.pdf

3 Experimental Efforts

Spectroscopy (KATRIN)

Calorimetry (HOLMES, ECHO &NUMECS)

Drexlin, V. Hannen, S. M., C. Weinheimer, Adv. High Energy Physics 2013, Article ID 293986, (2013)

- Use cyclotron frequency to extract electron energy
- Non-destructive measurement of electron energy

$$\omega(\gamma) = \frac{\omega_0}{\gamma} = \frac{eB}{K + m_e}$$

B. Monreal and Joe Formaggio, Phys. Rev D80:051301

Project 8 Setup

First electron detection

D.M. Asner et al., Single electron detection and spectroscopy via relativistic cyclotron radiation, Phys. Rev. Lett. 114, 162501 (2015)

First electron detection

D.M. Asner et al., Single electron detection and spectroscopy via relativistic cyclotron radiation, Phys. Rev. Lett. 114, 162501 (2015)

First electron detection

D.M. Asner et al., Single electron detection and spectroscopy via relativistic cyclotron radiation, Phys. Rev. Lett. 114, 162501 (2015)

Future Perspectives...

Joining efforts ...

KATRIN selects the electrons....

... and Project 8 measures their energy

1) Trigger the electron \rightarrow close the trap

2) Measure the energy

Summary

- In 2016 KATRIN will start tritium measurements. KATRIN will probe the entire degeneracy scale. Interesting potential to search for sterile neutrinos
- Cryogenic techniques are advancing to achieve the sub-eV sensitivity
- Project 8 proved a completely new concept via frequency measurement. Very promising to reach sub-eV sensitivity

Thanks for your attention

KATRIN Backup slides

Systematics

KATRIN Spectrometer Status

2015: 2nd measurement phase completed

- Spectrometer works as MAC-E Filter
- Liquid nitrogen cooled baffles eliminate Radon-induced background with an efficiency of ε = (97±2)%
- Remaining background is under investigation at the moment

Radon-induced Background

 $t_{1/2}(^{219}Rn) = 3.96 s$ $t_{1/2}(^{220}Rn) = 55.6 s$

Getter pump

N. Wandkowsky et al., New J. Phys. 15 (2013) 083040

N. Wandkowsky et al., J. Phys. G 40 (2013) 8

- 51
- S. M. et al., Astropart. Phys. 41 (2013) 52

Passive Reduction Technique

Holmium backup slides

ECHo: First Setup

ECHo: First Setup

ECHo: Some details

100 pixel with 10 - 100 Bq per pixes

Neutron activation of erbium 162, purification and mass separation, implantation Er161 Er162 Er163 Er164 Er16

Project 8 backup slides

Future Perspectives...

