FCC RF R&D Coordination Meeting 3

Olivier Brunner, 9/12/2015

Agenda of the day

- Minutes approval, follow-up from last meeting (O. Brunner) 10'
- Report from coordinator (E. Jensen) 10'
- Progress reports from all task leaders 20'
- Report from fellow activities 5'
- Specific reports
 - Preliminary program for Rome(15')
- Tour de table 15'
- AOB 5'

Next meetings:	January 20
	February 17
	March 16

RF R&D Review: 1,2 March 2016 (tbc)

New version of the document (see indico)

	Table of Contents			
1 F	RF SCENARIOS AND PARAMETERS LAYOUT (A.BUTTERWORTH)			
1.1 R	RF SCENARIOS AND PARAMETERS LAYOUT FOR FCC_EE			
1.2 R	RF SCENARIOS AND PARAMETERS LAYOUT FOR FCC_HH			
1.3 C	CAVITY DESIGN – TO BE STREAMLINED TO COPE WITH 1.1 & 1.2 (ACTION:			
)			
1.4 0				
2 C	COLLABORATION AGREEMENT CERN/ROSTOCK UNIVERSITY ENDUM FCC-GOV-CC-0038, KE2906) (F. GERIGK)			
2.1 A	ACCELERATING CAVITY DESIGN AND HOM COUPLERS			
2.2 2	2ND HARMONIC CAVITY DESIGN AND HOM COUPLERS			
з с	CAVITY MATERIAL AND PERFORMANCE (WALTER VENTURINI			
DELSOLARO)				
3.1 S	SUPERCONDUCTING MATERIAL DEVELOPMENTS 11			
4 0	COLLABORATION AGREEMENT CERN/LNL/STFC (KE2722/BE/FCC) (P.			
CHIGO	GIATO)13			
4.1 F	FRAMEWORK FOR SCIENTIFIC COLLABORATION IN SUPERCONDUCTING RF			
CAVITIES TECHNOLOGY				
5 (LAVITY FABRICATION (KARL SCHIRM)			
5.1 0				
5.2 1				
61 0	CRYOMODULE CHALLENGES (KARL SCHIRM)			
6.2 E	FUNDAMENTAL POWER COUPLERS			
6.3 0	CRYOMODULE DESIGN 21			
7 1	LIPE SYSTEM (W. HOFLE) 22			
7.1 E	FAST CAVITY FEEDBACKS FOR COUPLED BUNCH MODES, CAVITY TRIP			
HANDI	LING – IMPEDANCE MITIGATION			
8 E	EFFICIENCY OF RF POWER GENERATION (TBD)			
8.1 D	DEVELOPMENT OF VERY HIGH EFFICIENCY KLYSTRONS			
8.2 V	VERY HIGH EFFICIENCY KLYSTRONS WITH ADIABATIC BUNCHING			
	Y AT MANDATE OF ECC SDE WD 26			

- Action list:
 - WP1 to be completed, detailed and merged with WP2, (Andy & Rama)
 - WP2: define & adjust goals, (Frank)
 - WP3: propose a break down version (Walter)
 - WP5.1 & WP6: complete and detail (Karl)

RF R&D WP Review in March

- Main goals (my view!):
 - Agree on FCC hh RF system and FCC ee staging scenarios:

Phase 1: Reach the Higgs in first stage, Low Luminosity

- intermediate: ≈2.2 GV, ≈ 25 MW/beam

The requirements vary considerably! Phase 2: Reach the Higgs & the Z at nominal (see table previous page)

- Higgs, high Luminosity: 5.5 GV, 50 MW/beam, 30 mA

Z, high currents: 2.5 GV, 50 MW/beam, 1450 mA

Phase3: physics @175GeV

- Define best compromise for phase 2 & 1?
 - What is the optimum system for the Higgs @ nominal?
 - What do we get for the Z pole?
- What is the optimum system for the Z pole @ nominal? Main goals of W
 - Can we meet the requirements (1.45A, 16700 bunches, 3mm bl)?
 - loss factor ≈ 0.1 achievable (single cell)
 - lower possible loss factor for 1, 2 4 cell cavities? (vs bunch length)
 - Impact on bunch lenght limitation?
 - What is the optimum upgrade for phase 3? Common RF system for both beams? Add 800MHz RF system?

k (V/pC)	1	
lo (mA)	1450	
fo (kHz)	3	
nb	16700	
Phom	4.20E+04	W