

In-flight resonance decay of ¹⁰Be, ¹⁶C and ¹²C at intermediate energies

<u>Daniele Dell'Aquila</u> Università degli studi di Napoli "Federico II" & INFN – Sezione di Napoli

dellaquila@na.infn.it

INFN - Napoli × Univ. degli Studi di Napoli Federico II

Budapest, December 8th 2015

- Clustering in non self-conjugated nuclei;
- The state of art of ¹⁰Be and ¹⁶C nuclei structure;

Experimental details

- Exotic beam production and tagging at INFN-LNS: The FRIBs facility;
- The 4π CHIMERA multi-detector array;
- Helium break-up of self-conjugated nuclei as experimental test;

Experimental results

- ⁴He-⁶He correlations: the ¹⁰Be structure;
- ⁶He-¹⁰Be correlations: the ¹⁶C structure;

Conclusions and future perspectives

Exotic structures in light nuclei: an interesting scenario

Complexity of nuclear force \rightarrow **dominant** phenomena of nucleon-nucleon *correlations* which determine a spatial re-organization of the nucleons in bounded **sub-units** \rightarrow the *constituent clusters*.

Very big variety of physical phenomena that need investigations

The ¹⁰Be case

J	J(J+1)	E _x (MeV)		
0	0	6.18		
2	6	7.54		
4	20	10.15 <mark>[4]</mark>		

J	J(J+1)	E _x (MeV)	
0	0	0	
2	6	3.37	
4	20	11.78 [14] →11 [2] (?)	

[14] H.G. Bohlen et al., Phys. Rev. C 75, 054604 (2007)

- [2] D. Suzuki et al., Phys. Rev. C 87, 054301 (2013)
- [3] Y. Kanada-En'yo, J. Phys. G 24, 1499 (1998)
- [4] M. Freer et al., Phys. Rev. Lett. 96, 042501 (2006)
- [5] N. Soic et al., Europhys Lett. **34**, 7 (1996)
- [6] M. Freer et al., Phys. Rev. **C 63**, 034301 (2001)
- [7] H.T. Fortune and B. Sherr, Phys. Rev. **C 84**, 024304 (2011)
- [8] N.I. Ashwood et al., Phys. Rev. C 68, 0107603 (2004)
- [9] N. Curtis et al, Phys. Rev. **C 64**, 044604 (2001)
- [10] R. Wolsky et al., Phys. of Atom. Nucl. **73**, 1405 (2010)
- [11] F. Kobayashi and Y. Kanada-en'yo, J. Phys.: Conf. Ser. **436**, 012042 (2013)
- [12] S. Ahmed et al., Phys. Rev. C 69, 024303 (2004)
- [13] N. Curtis et al. Phys. Rev. **C 73**, 057301 (2006)

Rotational band in dimeric structure \rightarrow very interesting case

The ¹⁶C case

possible cluster configurations → AMD calculations Ref. [1]

Experimental evidence still missing!

Istituto Nazionale di Fisica Nucleare LNS - Laboratori Nazionali del Sud

[1] I. Lombardo et al., Nuc. Phys. **B 215**, 272 (2011).

Beam production→IFF (In Flight Fragmentation) technique → FRIBs (Flight Radioactive Ion Beams) facility @ INFN-LNS:

- ${}^{18}O^{7+}$ at 56 MeV/u (superconducting cyclotron K800);
- ⁹Be (1,5 mm tickness) production target;
- LNS-FRS (Fragment-Recoil Separator) $B\rho \approx 2,8Tm$;

Istituto Nazionale di Fisica Nucleare LNS - Laboratori Nazionali del Sud

[1] I. Lombardo et al., Nuc. Phys. **B 215**, 272 (2011).

Beam production→IFF (In Flight Fragmentation) technique → FRIBs (Flight Radioactive Ion Beams) facility @ INFN-LNS:

- ${}^{18}O^{7+}$ at 56 MeV/u (superconducting cyclotron K800);
- ⁹Be (1,5 mm tickness) production target;
- LNS-FRS (Fragment-Recoil Separator) $B\rho \approx 2,8Tm$;

Tagging system [1] (particle by particle identification):

• MCP large area detector;

Istituto Nazionale di Fisica Nucleare LNS - Laboratori Nazionali del Sud

[1] I. Lombardo et al., Nuc. Phys. **B 215**, 272 (2011).

Beam production → IFF (In Flight Fragmentation) technique → FRIBs (Flight Radioactive Ion Beams) facility @ INFN-LNS:

- $^{18}O^{7+}$ at 56 *MeV*/*u* (superconducting cyclotron K800);
- ⁹Be (1,5 mm tickness) production target;
- **LNS-FRS** (Fragment-Recoil Separator) $B\rho \approx 2,8Tm$;

Tagging system [1] (particle by particle identification):

- MCP large area detector;
- **DSSSD** position sensitive detector ($\approx 13m$ after);

[1] I. Lombardo et al., Nuc. Phys. **B 215**, 272 (2011).

INFN

Istituto Nazionale di Fisica Nucleare

LNS - Laboratori Nazionali del Sud

Beam production → IFF (In Flight Fragmentation)
 technique → FRIBs (Flight Radioactive Ion Beams)
 facility @ INFN-LNS:

- ${}^{18}O^{7+}$ at 56 MeV/u (superconducting cyclotron K800);
- ⁹Be (1,5 mm tickness) production target;
- **LNS-FRS** (Fragment-Recoil Separator) $B\rho \approx 2,8Tm$;

Tagging system [1] (particle by particle identification):

- MCP large area detector;
- **DSSSD** position sensitive detector ($\approx 13m$ after);

Identification (Δ E-ToF) plot FRIBs cocktail beam \rightarrow good performances. High exotic beams intensity:

- ¹⁶C (49,5 *MeV*/*u*) $10^5 pps$;
- ¹³B (49,5 *MeV*/*u*) $5 \cdot 10^4$ *pps*;
- ¹⁰Be (56,0 MeV/u) 4 · 10⁴ pps;

Complete cocktail beam identification

The CHIMERA 4π multi-detector

CHIMERA (Charged Heavy Ion Mass Energy Resolving Array) [1,2]

[1] A. Pagano, Nucl. Phys. News 22, 25 (2012)
 [2] A. Pagano et al., Nucl. Phys. A 734, 504 (2004)

- 1192 ∆E-E telescopes (~300µm Si + CsI(TI) scintillator);
- 9 forward rings $(1^{\circ} \le \theta \le 30^{\circ});$
- 17 rings sphere $(30^{\circ} < \theta \le 176^{\circ});$

 \triangle E-E identification technique \rightarrow particles and fragments identification.

ΔE -E identification \rightarrow good isotopic separation

Check on self-conjugated nuclei

As a starting check → correlations between helium break-up fragments from selfconjugated nuclei

2 α correlations \rightarrow the ⁸Be spectroscopy:

MonteCarlo simulation \rightarrow good agreement with the experimental data for the 91,8 keV peak (⁸Be_{gs}) \rightarrow good consistency of the procedure.

Possible contaminations of ⁹Be neutron decay \rightarrow ghost peaks?

Check on self-conjugated nuclei

As a starting check → correlations between helium break-up fragments from selfconjugated nuclei

 3α correlations \rightarrow the ¹²C spectroscopy:

3 body correlations \rightarrow good agreement with the literature \rightarrow ¹²**C Hoyle state**.

 \diamond

Good test for the experimental technique

Found **bumps** corresponding to **excited states** known in literature (vertical arrows) \rightarrow interesting peak at about 13.5 MeV.

- Napoli & INFN Univ. degli Studi di Napoli Federico II

background contribution →

event mixing procedure.

Found **bumps** corresponding to excited states known in literature (vertical arrows) \rightarrow interesting peak at about 13.5 MeV.

Smooth efficiency for both the possible target nuclei (¹²C and ¹H from the polyethylene CH₂ target used) → MonteCarlo simulation with exponential angular distribution in the anelastic scattering center of mass frame:

> $\frac{d\sigma}{d\sigma} \propto e^{\frac{\theta_{cm}}{\alpha}}$ $\overline{d\Omega_{cm}}$ α fall-of factor 12°-16°

Possible evidence of a new excited state at about 13.5 MeV not reported in literature.

Angular correlation analysis on 13.5 MeV state \rightarrow high spin contributions \rightarrow possible 6⁺ assignement \rightarrow agreement with the recent R-matrix calculation in resonant elastic scattering ⁶He+⁴He experiment [1]

Angular correlation analysis on 13.5 MeV state \rightarrow high spin contributions \rightarrow possible 6⁺ assignement \rightarrow agreement with the recent R-matrix calculation in resonant elastic scattering ⁶He+⁴He experiment [1]

Angular correlation analysis on 13.5 MeV state \rightarrow high spin contributions \rightarrow possible 6⁺ assignement \rightarrow agreement with the recent R-matrix calculation in resonant elastic scattering ⁶He+⁴He experiment [1]

Possible 6⁺ further member of the K=0⁺ molecular band \rightarrow low statistics \rightarrow new experiments are needed.

Continuation of the ¹⁰Be molecular band

As a final test \rightarrow complete MonteCarlo simulation with the 13.5 MeV state (shadowed histogram) \rightarrow nice agreement with the experimental data (black points)

- M. Freer et al., Phys. Rev. Lett. 96, 042501 (2006) [7]
- N. Soic et al., Europhys Lett. 34, 7 (1996) [8]
- G.V. Rogachev et al., J. Phys.: Conf. Ser. 569, 012004 (2014) [9]

[3]

[5] [6]

The ¹⁰Be spectroscopy

N. I. Ashwood et al., Phys. Rev. C 70, 0644607 (2004)
 P.J. Leask et al., Jour. Phys. G: Nucl. Part. Phys. 27, B9 (2001)

Low statistics results \rightarrow 20,6 MeV bump

Experimental data
 Efficiency ¹H target
 Efficiency ¹²C target

Enhancement at about 20.6 MeV → possible agreement with the previous low statistics measurement s [1][2]→ more statistics required to confirm the suggestion.

[1] N. I. Ashwood et al., Phys. Rev. C 70, 0644607 (2004)
[2] P.J. Leask et al., Jour. Phys. G: Nucl. Part. Phys. 27, B9 (2001)

Low statistics results \rightarrow 20,6 MeV bump

Low statistics results \rightarrow 20,6 MeV bump

CLIR (Clustering in Light Ion Reactions) February– June 2015 → new investigation of cluster structures in nuclear reactions induced by FRIBs beams at INFN-LNS

FARCOS array [2] coupled to CHIMERA device → improved energy and angular resolution → Double Sided Silicon Strip Detectors (DSSSD)+CsI detectors.

- Napoli

& INFN

CLIR (Clustering in Light Ion Reactions) February– June 2015 \rightarrow new investigation of cluster structures in nuclear reactions induced by FRIBs beams at INFN-LNS

FARCOS array [2] coupled to **CHIMERA** device \rightarrow **improved** energy and angular resolution \rightarrow **Double Sided Silicon Strip Detectors (DSSSD)+CsI** detectors.

CLIR (Clustering in Light Ion Reactions) February– June 2015 \rightarrow new investigation of cluster structures in nuclear reactions induced by FRIBs beams at INFN-LNS

FARCOS array [2] coupled to **CHIMERA** device \rightarrow **improved** energy and angular resolution \rightarrow **Double Sided Silicon Strip Detectors (DSSSD)+CsI** detectors.

 Δ E-E identification plot with FARCOS DSSSD (1500 μ m) vs CsI fast ¹⁶O+C @ 55 MeV/u CLIR (Clustering in Light Ion Reactions) February– June 2015 → new investigation of cluster structures in nuclear reactions induced by FRIBs beams at INFN-LNS

FARCOS array [2] coupled to **CHIMERA** device \rightarrow **improved** energy and angular resolution \rightarrow **Double Sided Silicon Strip Detectors (DSSSD)+CsI** detectors.

Data analysis in progress...

- We have performed a spectroscopic investigation of ¹⁰Be and ¹⁶C via cluster breakup reactions at intermediate energies at INFN-LNS.
- The cocktail beam was provided by the FRIBs facility \rightarrow particle by particle identification \rightarrow tagging system coupled to CHIMERA 4 π multi-detector.
- ⁶He-⁴He correlations → structure of ¹⁰Be → new possible 6⁺ state at about 13.5 MeV excitation energy → possible agreement with a recent R-matrix calculation [1] (resonant elastic scattering data) → energetic compatibility with a 6⁺ further member of the ¹⁰Be molecular band.
 - ⁶He-¹⁰Be correlations \rightarrow structure of ¹⁶C \rightarrow very low statistics data \rightarrow agreement with previous experiment enhancement at about 21 MeV excitation energy.

Future Perspectives: **CLIR experiment** INFN-LNS February 2015 – June 2015 Data Analysis still in progress...

[1] G. Rogachev et al., J. Phys.: Conf. Ser. 569, 012004 (2014)

Thank you for your attention.

Further Slides

The ¹⁰Be case

Future Perspectives: the CLIR experiment @ INFN-LNS

[2] G. Verde et al., J. Phys. Conf. Ser. 420, 0112158 (2013)

¹²C \rightarrow study of branching ratios for cluster disintegration $\rightarrow {}^{12}C^* \rightarrow {}^{8}Be_{as}^* + \alpha \rightarrow 3\alpha$ counts 9.641 MeV (3 $^{12}\text{C}^{\star} \rightarrow 3\alpha$ No evidence of Equal **Energy Sharing (EES)** 654 MeV (0⁺) Hoyle state Global (gaussian + background) for the Hoyle state 12.71 MeV (1⁺ 80 Signal (background subtracted) 10.84 MeV (1[¯]) 11.83 MeV (2 $^{12}C^* \rightarrow \alpha + {}^{8}Be_{\alpha s} \rightarrow 3\alpha$ Signal (background subtracted) 60 40 E_{exc} [MeV] $\Gamma_{\alpha_0}/\Gamma_{\alpha}$ Refs $\Gamma_{\alpha_0}/\Gamma_{\alpha_0}$ Present Work 20 > 0,995 [1,2]; 7,654 ≈ 1,00 $0,83 \pm 0,05$ [3] 9,641 $0,82 \pm 0,09$ 0,972 [4] 10 12 8 16 18 20 14 11,83 $0,10 \pm 0,21$ ≈ 0 [4] [1] O.S. Kirsebom et al., Phys. Rev. Lett. 108, 202501 (2012). 12,71 $0,22 \pm 0,24$ ≈ 0 [4]

[2] J. Manfredi et al., Phys. Rev. C 85, 037603 (2012). [3] Ad.R. Raduta et al., Phys. Lett. B 705, 65 (2011). [4] M. Freer et al., Phys. Rev. C 76, 034320 (2007).

Superior limit for EES decay < 2%!!!

INFN - Napoli ø Napoli Federico II Studi di Univ. degli

¹⁶C 3 body disintegration \rightarrow ⁶He+⁶He+⁴He break-up channel \rightarrow low statistics data \rightarrow no data present in literature .

Very low statistics → no data in literature

Tagging system layout

Q-value spectrum for ⁶**He**+⁴**He decay**

M. Freer et al., Phys. Rev. C 63, 034301 (2001) [1]

from ref. S. Marsh and W.D.M. Rae, Phys. Lett. B 153, 21 (1985)

Perspectives with N=Z nuclei: ¹²C case

¹²C case: structure of the Hoyle State (sequential vs direct emission) in vacuo and in medium \rightarrow signature of BEC ???

	Experiment	DDE (%)	DD4 (%)	DDL (%)	DD (%)	C.L. (%)
V	Freer et al				< 4	99.5
m	Raduta et al	7.5 ± 4.0		9.5 ± 4.0	17.0 ± 5.0	
v	Manfredi et al	< 0.45	$1.3 \pm 0.9 \; (< 3.9)$			99.75
V	Kirsebom et al	< 0.09	< 0.5	< 0.09	< 0.5	95
v	Rana et al	0.3 ± 0.1	0.60 ± 0.09	< 0.1	0.91 ± 0.14	99.75
V	Itoh et al	< 0.08	< 0.2		< 0.2	95

from Itoh et al, PRL 113 (2014)

Could we shed light on this situation?

Perspectives with N=Z nuclei: ¹²C case

2400

¹²C case: idea on a *high resolution* new measurement at *low energy*

Branching ratios of other ¹²C* states

Experimental method: sequential break-up reactions

molecular structures suggested near the disintegration thresholds \rightarrow lkeda scheme \rightarrow Basic Idea:

projectile sequential **break-up reactions** to explore ¹⁰Be and ¹⁶C cluster structure.

Sequential break-up reaction: anelastic excitation of projectile nucleus above the particle emission threshold \rightarrow sequential disintegration of projectile nucleus

To obtain the **spectroscopy** of break-up nucleus \rightarrow relative energy analisys:

$$E_{exc} = E_{rel} + E_{thr}$$

A powerful investigation method

Correlations: a tool for spectroscopy

In Flight beams \rightarrow short living RI \rightarrow inelastic scattering or reactions on targets followed by break-up \rightarrow cluster decay of nuclei \rightarrow correlations (high energy and angular resolution)

Correlations \rightarrow ¹⁰Be and ¹⁶C structure