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Dezső Horváth: Neutrino mass Zimányi School, Budapest, 2015.12.08 – p. 2/27



Motivation

Ultra-fast neutrinos?

Simple velocity measurement

Velocity → mass

Simulations

U. D. Jentschura, D. Horváth, S. Nagy, I. Nándori, Z. Trócsányi and B.

Ujvári: Weighing the Neutrino

Int.J.Mod.Phys. E23 (2014) 1450004; arXiv:1312.3932

D. Horváth: Ultra-Fast Neutrinos: What Can We Learn from a False

Discovery? In Gribov85, Proceedings of 4th V.N. Gribov Memorial

Workshop: Theoretical Physics of XXI Century, 17-20 June 2015,

Chernogolovka, Russia
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Neutrino Sources
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Standard Model: 3 light neutrinos

LEP: invisible width of the Z boson
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Neutrinos from the Sun
41H→4He + 2e+ + 2νe Detection unit:

Solar Neutrino Unit

1 SNU = 10−36 ν− interaction
atom · sec

≈ 1 ν interaction/day/1030

atoms

(10 – 100 tons of material)

Experiment:

νe +
37 Cl→37Ar + e−

(R. Davis, Nobel prize 2002)

Expected: 8, 2± 1, 8 SNU;

measured: 2, 56± 0, 23 SNU

Lost??

What is wrong: Sun model or experiment?

Both multiply confirmed
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Atmospheric neutrinos

π+→µ+νµ
µ+→e+νµνe

π−→µ−νµ
µ−→e−νeνµ

Expected:

Nµ/Ne ∼ 2

Measured:

Nµ/Ne ≪ 2

Lost? Where?
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Many neutrino experiments

In mines, tunnels, under water or ice
17 completed, 34 working, 9 under construction, 7 planned
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4 Nobel Prizes in physics for ν expts

The Nobel Prize in Physics 1988 was awarded jointly to Leon M. Lederman,

Melvin Schwartz and Jack Steinberger "for the neutrino beam method and

the demonstration of the doublet structure of the leptons through the

discovery of the muon neutrino".

The 1995 Nobel Prize in Physics was awarded for pioneering experimental

contributions to lepton physics with one half to Martin L. Perl for the

discovery of the tau lepton and with one half to Frederick Reines for the

detection of the neutrino.

The Nobel Prize in Physics 2002 was divided, one half jointly to Raymond

Davis Jr. and Masatoshi Koshiba for pioneering contributions to

astrophysics, in particular for the detection of cosmic neutrinos

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and

Arthur B. McDonald for the discovery of neutrino oscillations, which shows

that neutrinos have mass.
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Neutrino oscillation
Bruno Pontecorvo, 1963

Neutrino states are

mixed by weak

interaction

Weak eigenstates:

(νe, νµ)

Mass (eigen)states:

(ν1, ν2)

(Θ: mixing angle)

Oscillation: νe⇔νµ
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SKK: Atmospheric neutrinos

Kamioka Nucleon Decay

Experiment (originally for proton

decay)

In Kamioka mine at 1000 m depth

(M. Koshiba, Nobel Prize, 2002)

For multi-GeV muon-neutrinos

νµ⇔ντ oscillation

on Earth’s diameter

Flux upward/Flux downward =
N(−1,0<cosΘ<−0,2)
N(0,2<cosΘ<1.0) = 0, 54± 0, 04

1, 3× 10−3eV2
≤ ∆M2

atm ≤ 3, 0× 10−3eV2

(T. Kajita, Nobel Prize, 2015)
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Sudbury Neutrino Observatory (SNO)

Total flux ≈ theory

νe oscillates into other two

∆M2 = 8× 10−5 eV2

(SNOlab, A. B. McDonald, Nobel

Prize, 2015)

Atmospheric neutrinos: νµ⇔ ντ oscillation along Earth’s diameter

Sun neutrinos: νe⇔ νX oscillation on Sun–Earth distance

Thus mν > 0 for at least 2 neutrinos!
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How can neutrinos obtain mass?

Neutrino oscillation is mysterious as they have only weak interaction and

should not have mixed states

The Standard Model should be violated or extended to accomodate

neutrino masses

Why so small? Seesaw mechanism: light Dirac + heavy sterile?

Maybe extra Higgs fields give them masses?

Mixed by a fifth force??

The hypercharges of νR és νL are Y = 0, sterile (no pairing to

charged leptons) and we do not observe such states (maybe LSND

or MiniBoone expts?)

Could neutrinos be Majorana particles, ν = ν?

Oscillation gives ∆M2
ν only

Direct measurement Mν < 2 eV (tritium decay)
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Accelerator experiments

for studying neutrino oscillation

Cosmic protons create pions in atmosphere:
pA→π±X π±→µ±νµ; µ±→e±νµνe L ∼ 30km

Accelerator production ∼ atmospheric

L ∼ 1 . . . 1000 km, νe + 2νµ; ν és ν

At high energy π±→µ±νµ forward.

Muon slows down before decay ⇒ products in 4Π.

∼ pure νµ beam along proton direction.
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Long distance accelerator experiments

CNGS: CERN → Gran Sasso:

OPERA, 732 km

K2K: KEK → Kamioka: 250 km

Fermilab → MINOS: 735 km

T2K (Tokai → Kamioka): 295 km
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The OPERA experiment at Gran Sasso
Oscillation Project with Emulsion-tRacking Apparatus

to study νµ→ντ oscillation

They have indentified 5 τ neutrinos!

In 2011 observed faster-than-light νµ due to faulty time synchronization.
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Let us measure the mass of νµ!

MINOS and OPERA measured time-of-flight
on the distance of 730 km using GPS with ∆t = 10 ns

precision

Particle detectors can do ∆t = 10 ps
At L = 1 . . . 10 km no GPS needed, one can directly

compare νµ to light.

Velocity is uninteresting, but one can use it to measure
mass

νµ can travel in vacuo or in matter

(although its effect must be small for low-energy neutrinos)

U. D. Jentschura, D. Horváth, S. Nagy, I. Nándori,

Z. Trócsányi and B. Ujvári: Weighing the Neutrino

Int.J.Mod.Phys. E23 (2014) 1450004; arXiv:1312.3932
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Measuring the mass of νµ?

But what is it? What is νµ mass??

m
2(νf) =

3∑

i=1

Ufi m
2(νi)

where νf : flavor, νi: mass eigenstate,

Ufi: Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix

Only direct measurement: m(νµ) < 2.2 MeV/c2 (90% konf.) by one

event detected by OBELIX at LEAR in 1996:

N. Angelov et al., Nucl. Phys. A 780 (2006) 78

Cosmology (Planck, 2015):
∑

3

i=1
m(νi) < 0.23 eV
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KArlsruhe TRItium Neutrino: M(νe)
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Transport of KATRIN: 400 ⇒ 9000 km

Deggendorf → Karlsruhe: Danube, seas, Rhine

Leopoldshafen
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Measuring M(νµ)

Flying M(νµ) together with photons, L = 10 km

A lot of protons are needed: laser accelerator (ELI?)
Detector: e.g. liquid scintillator (Borexino)

Dezső Horváth: Neutrino mass Zimányi School, Budapest, 2015.12.08 – p. 21/27



Experimental conditions

CERN Super Proton Synchrotron (SPS), Ep = 450GeV

t = 0 for timing: proton kicker or laser start

Thin (2 mm) graphite target: p+N → π±+X

π→µ+ νµ (γ ≈ 2), flight on 10 cm.

B = 8 T deflects π±, µ± (∆t ≈ 10−10 s)

Decaying pions: 0.57%, can be handled

Neutrino flight, νµ és νµ (in vacuo or matter) together

with photons (in vacuo): s0 = 10 km (no need to
measure time and distance separately)

Detector: liquid scintillator (Borexino): good for low
energies, Eν > 0.2 MeV (Cherenkov is faster, but
Eν > mµ = 105MeV). Cosmic veto around it.
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Monte Carlo simulations

Time resolution depends on precise positioning of neutrino
beam. If it is centered on a 10m× 10m liquid scintillator:

δt ≈ 3 ps.
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Expected precision

10× 10m liquid scintillator in the middle of the neutrino
beam: δt ≈ 3 ps.

1011 protons, Ep = 450GeV, target: 2 mm graphite;

E(π±) = 100± 1GeV, S0 = 10 km νµ flight:

δc =
c2 δt

s0
≈ 30m/s

E(νµ) = 1MeV: δm(νµ) ≈ 420 eV ≪ 2, 2MeV

This is also a CPT (Lorentz-violation) test, which could
mean a significant improvement to previous limits.
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Summary

Neutrinos are mysterious, experiments needed

Questions ⇒ new physics?

Where is their mass coming from?

Should the Higgs sector be extended?

Majorana, Dirac or both?

Is there a sterile ν?

A new force to mix them?

A new measurement of m(νµ):

Shorter distance

Simpler setup

Higher precision
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Thank you for your attention!
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Spare slide

Expected precision of mass measurement

Time measurement:

TOF: 0.01 ∗∆t ≈ 1 ps

Detector: ∆t ≈ 3 ps.

Velocity: vν = s0/t0 = (1− δ)c, δ = c∆t/s0

s0 = 10 km: δc = c2∆t/s0 = 30m/s ⇒ δ ≈ 10−7

m(νµ) = 1MeV, ∆m(νµ) ≈ 420eV.
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