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Introduction

The Monte Carlo results in lattice QCD for the pressure and energy density at
small temperature T < 155 MeV and zero baryonic chemical potential are
analyzed within the hadron resonance gas model. Two extensions of the
ideal hadron resonance gas are considered: the excluded volume model
which describes a repulsion of hadrons at short distances and Hagedorn
model with the exponential mass spectrum. Considering both of these
models one by one we do not find the conclusive evidences in favor of any of
them. The controversial results appear because of rather different
sensitivities of the pressure and energy density to both excluded volume and
Hagedorn mass spectrum effects. On the other hand, we have found a clear
evidence for a simultaneous presence of both of them. They lead to rather
essential contributions: suppression effects for thermodynamical functions of
the hadron resonance gas due to the excluded volume effects and
enhancement due to the Hagedorn mass spectrum.
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Introduction
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The lattice results from [1] for 3p/T 4 (squares) and ε/T 4 (cir-
cles) at zero baryonic chemical potential.

[1] S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, and K. K. Szabo, Phys. Lett. B 730, 99 (2014).
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Lattice data v.s. hadron EOS

From Fig. 1 we observe a steep increase of thermodynamical
quantities near the crossover temperature Tc . This temperature is
estimated in the range of 150-160 MeV. The values of 3p/T 4 and
ε/T 4 in the deconfined quark-gluon phase approach slowly from
below the Stefan-Boltzmann limit

3pSB

T 4 =
εSB

T 4 = σSB ,

which equals to (in the 3-flavor QCD)

σSB = 19π2/12 ∼= 15.6

At T < Tc the confined hadron phase emerges. We use the lattice
data [1] to constrain EOS of the hadronic matter.
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Ideal Hadron Resonance Gas

Ideal HRG pressure
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ηi = −1 for bosons, ηi = 1 for fermions, η = 0 for the Boltzmann statistics

µi = bi µB + si µS + qi µQ with bi = 0, ±1, si = 0, ±1, ±2, ±3, and qi = 0, ±1, ±2

Ideal HRG energy density
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This includes mesons up to f2(2340) and (anti-)baryons up to N(2600)

fi (m) = “the Breit-Wigner shape of resonance with finite width Γi around their average mass mi ”

fi (m) = δ(m − mi ) for the stable hadrons
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The motivations for HRG description

A description of hadron multiplicities in high-energy nucleus-nucleus
collisions shows a surprisingly good agreement between the results of the
HRG model and the experimental data, see [2]. In most statistical model
formulations the ideal HRG is used. It is argued that a presence of all known
resonance states in the thermal system takes into account attractive
interactions between hadrons.

[2]
J. Cleymans and H. Satz, Z. Phys. C 57, 135 (1993);
F. Becattini, J. Cleymans, A. Keranen, E. Suhonen and K. Redlich, Phys. Rev. C 64, 024901 (2001);
P. Braun-Munzinger, D. Magestro, K. Redlich, and J. Stachel, Phys. Lett. B 518, 41 (2001);
J. Rafelski and J. Letessier, Nucl. Phys. A 715, 98c (2003);
A. Andronic, P. Braun-Munzinger, and J. Stachel, Nucl. Phys. A 772, 167 (2006);
F. Becattini, J. Manninen and M. Gazdzicki, Phys. Rev. C 73, 044905 (2006).
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Extensions of the ideal HRG model

Two extensions of the ideal RG model have been widely discussed:

1) The first one is the excluded volume HRG model which introduces the
effects of hadron repulsions at short distances [3].

2) The second extension of the HRG model is an inclusion of the
exponentially increasing mass spectrum ρ(m) proposed by Hagedorn about
50 years ago [4]. These excited colorless states (fireballs) are considered as
a continuation of the resonance spectrum at masses m higher than 2 GeV.

[3]
M. I. Gorenstein, V. K. Petrov, and G. M. Zinovjev, Phys. Lett. B 106, 327 (1981);
D. H. Rischke, M. I. Gorenstein, H. Stoecker, and W. Greiner, Z. Phys. C 51, 485 (1991).

[4]
R. Hagedorn, Nuovo Cim. Suppl. 6, 311 (1968);
R. Hagedorn and J. Ranft, Nuovo Cim. Suppl. 6, 169 (1968).
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Excluded volume procedure

The van der Waals excluded volume procedure can be regarded as a
substitution of the total system volume V by the available volume Vav

V → Vav = V −
∑

i

vi Ni , vi = 4 · (4πr3
i /3)

vi is the proper volume, ri is the hard-core radius of a particle.
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Excluded volume procedure in the mean-field approach

These equations can be also obtained in the framework of thermodynamically
self-consistent mean-field theory, which gives a sequential treating of the
problem when one can examine various different mean fields that mimic the
repulsive and attractive interactions (for details see [5])

Single-particle spectrum
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[5] D. Anchishkin, V. Vovchenko, J. Phys. G42, 105102 (2015); arXiv:1411.1444 [nucl-th].

V. Vovchenko, D.V. Anchishkin, M.I. Gorenstein, Phys. Rev. C91, 064314 (2015); arXiv:1504.01363 [nucl-th].
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Excluded volume procedure in the mean-field approach: the Boltzmann statistics

For the Boltzmann statistics ηi = 0 all equations are simplified. The
distribution function reads

f (T , µ) = exp
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with the van der Waals repulsive mean field Urep
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Ideal HRG and excluded volume HRG versus the lattice data

µB = µS = µQ = 0
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Figure: (a): The ideal HRG pressure, pid(T )/T 4, is shown as a function of
temperature at µ = 0 by the dotted line. The Boltzmann approximation ηi = 0
is shown by the solid line. (b): The ideal HRG pressure and excluded volume
HRG pressure for several different values of hard-core radius r are
presented. The Stefan-Boltzmann limit for the deconfined quark-gluon phase,
pSB/T 4 = σSB/3 ∼= 5.2 is indicated by the horizontal dotted line.

Conclusion : r ≥ 0.13

fm
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The excluded volume HRG versus the lattice data [1]
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Figure: The results of excluded volume HRG model for different values of r
are compared to the lattice data [1] for p/T 4 (a) and the values of χ2

p/Ndf (b)
are shown as functions of r . The shaded grey area corresponds to
r ≤ 0.13 fm.
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The excluded volume HRG versus the lattice data [1]
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Figure: The results of excluded volume HRG model for different values of r
are compared to the lattice data [1] for ε/T 4 (c). The values of χ2

ε/Ndf are
shown as functions of r (d). The shaded grey area corresponds to
r ≤ 0.13 fm.
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The excluded Volume HRG with the Hagedorn mass spectrum

The above comparison with lattice data may indicate a presence of additional contributions to pev and εev in the excluded volume HRG

model. These contributions should be small enough for the pressure and much larger for the energy density. We argue that massive

Hagedorn states are the ideal candidates for this role. Indeed, each heavy particle with m ≫ T gives its contribution, T , to the pressure,

and much larger contribution, m + 3T/2, to the energy density.

the Hagedorn mass spectrum [4]

ρ(m) = C
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Selfconsistent equation with the Hagedorn resonances
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The excluded volume HRG Hagedorn model versus the lattice data
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Figure: The results of excluded volume HRG Hagedorn model for different
values of r are compared to the lattice data for p/T 4 and ε/T 4. The value of
C is fixed as C = 0.05 GeV3/2.
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The excluded volume HRG Hagedorn model versus the lattice data
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Figure: (a): Parameter C which minimizes χ2/Ndf at each value of r is shown
as a function of r . (b): The quantity χ2/Ndf as a function of r . For each value
of r parameter C is fitted in order to minimize χ2/Ndf. The shaded grey area
corresponds to r ≤ 0.13.
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Conclusions

1 A condition that the pressure of the HRG should not exceed the
Stefan-Boltzmann limit for quarks and gluons indicates that hadrons
should have a non-zero hard-core radius of at least 0.13 fm.

2 A comparison of the excluded volume HRG model with the lattice data
at T < 155 MeV yields no conclusive evidences in favor of a presence
of the excluded volume effects. The fit of plat/T 4 prefers values of
r . 0.4 fm, while the best fit of εlat/T 4 corresponds to r ∼= 0.

3 Neither excluded volume HRG nor ideal HRG with additional Hagedorn
states being considered separately demonstrates any advantages for
fitting the lattice data in a comparison to the ideal HRG model.

4 There is a clear indication that both the hard core repulsion and the
Hagedorn mass spectrum should be taken into account simultaneously
in the framework of the hadron resonance gas model.

More details in:

V. Yu. Vovchenko, D.V. Anchishkin, M.I. Gorenstein, Phys. Rev. C91, 024905 (2015); arXiv:1412.5478 [nucl-th].
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Thank you for attention!
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