# ENHANCING THE EFFICIENCY OF PLASMA WAKEFIELD ACCELERATION

### Mihály András Pocsai

Wigner Research Centre for Physics of the HAS University of Pécs, Faculty of Sciences, Departement of Physics

7<sup>th</sup>-11<sup>th</sup> of December 15<sup>th</sup> Zimányi School, 2015 Wigner RCP, Budapest





# **OUTLINE**

- Introduction
- THEORETICAL BASICS
  - Gaussian Pulses
  - Generalization for Bichromatic Fields
  - Equations of Motion
  - The Presence of an Underdense Plasma
- RESULTS
  - General Remarks
  - Monochromatic Fields
  - Comparison with Experimental Data
  - Bichromatic Fields
- SUMMARY

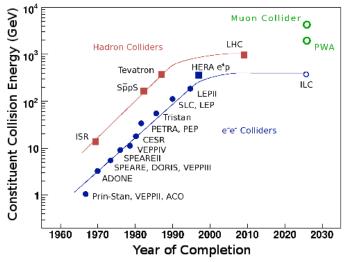


# **OUTLINE**

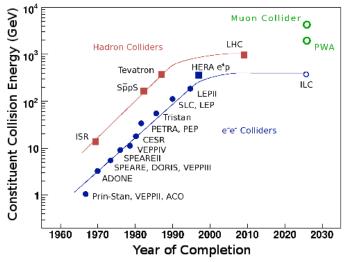
- Introduction
- THEORETICAL BASICS
  - Gaussian Pulses
  - Generalization for Bichromatic Fields
  - Equations of Motion
  - The Presence of an Underdense Plasma
- 3 RESULTS
  - General Remarks
  - Monochromatic Fields
  - Comparison with Experimental Data
  - Bichromatic Fields
- 4 SUMMARY



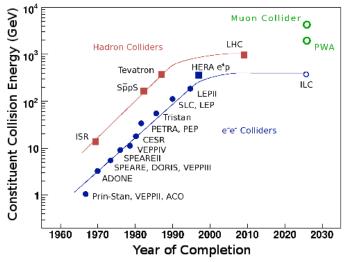
- State-of-the-Art technology: circular accelerator, 8.3 T, 14 TeV
- Limit: accelerating field < 50 MV/m</li>



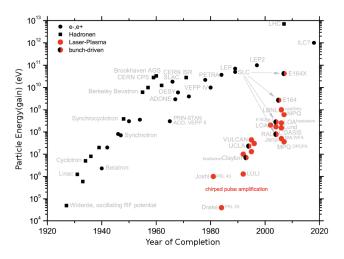
- State-of-the-Art technology: circular accelerator, 8.3 T, 14 TeV
- Limit: accelerating field < 50 MV/m



- State-of-the-Art technology: circular accelerator, 8.3 T, 14 TeV
- Limit: accelerating field < 50 MV/m

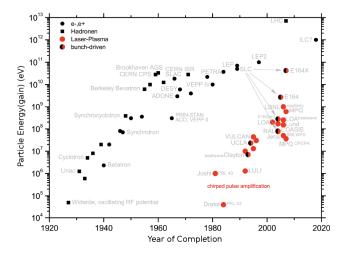


# How further → VLHC? Extremely Expensive! (Future Circular Collider Kick Off Meeting, Feb. 2014, Geneva)



Plasma Wakefield Acceleration

How further → VLHC? Extremely Expensive! (Future Circular Collider Kick Off Meeting, Feb. 2014, Geneva) New, cheaper technologies are needed → Plasma based acceleration!



- PWFA: electron/proton bunch drives the wakes.
- **LWFA:** Short ( $\approx$  1 ps), ultra intense  $I \ge 10^{18} \mathrm{W \cdot cm^{-2}}$  pulse.  $L = c\tau_{D} \approx \lambda_{D} = 2\pi c/\omega_{D}, n = 10^{15} \mathrm{cm^{-3}}.$
- **PBWA:** Two laser pulses,  $\omega_1 \omega_2 \sim \omega_p$ ,  $n = 10^{16} 10^{17} \, \mathrm{cm}^{-3}$ . An alternative for LWFA.
- **SMLWFA:** LWFA on higher plasma densities.  $n=10^{19}\,\mathrm{cm^{-3}}$ ,  $I\approx 10^{19}\,\mathrm{W\cdot cm^{-2}}$ ,  $L>\lambda_p$ . The plasma "chops up" the long laser pulse. The length of the equidistently spaced train of smaller pulses mathces the plasma wavelength. This train of pulses resonantly excites the plasma.
- Multiple bunches or pulses: larger amplitude plasma waves.



- PWFA: electron/proton bunch drives the wakes.
- **LWFA:** Short ( $\approx$  1 ps), ultra intense  $I \ge 10^{18} \mathrm{W \cdot cm^{-2}}$  pulse.  $L = c\tau_p \approx \lambda_p = 2\pi c/\omega_p$ ,  $n = 10^{15} \mathrm{cm^{-3}}$ .
- **PBWA:** Two laser pulses,  $\omega_1 \omega_2 \sim \omega_p$ ,  $n = 10^{16} 10^{17} \, \mathrm{cm}^{-3}$ . An alternative for LWFA.
- **SMLWFA:** LWFA on higher plasma densities.  $n=10^{19}\,\mathrm{cm^{-3}}$ ,  $I\approx 10^{19}\,\mathrm{W\cdot cm^{-2}}$ ,  $L>\lambda_p$ . The plasma "chops up" the long laser pulse. The length of the equidistently spaced train of smaller pulses mathces the plasma wavelength. This train of pulses resonantly excites the plasma.
- Multiple bunches or pulses: larger amplitude plasma waves.



- PWFA: electron/proton bunch drives the wakes.
- **LWFA:** Short ( $\approx$  1 ps), ultra intense  $I \ge 10^{18} \mathrm{W \cdot cm^{-2}}$  pulse.  $L = c\tau_p \approx \lambda_p = 2\pi c/\omega_p$ ,  $n = 10^{15} \mathrm{cm^{-3}}$ .
- **PBWA:** Two laser pulses,  $\omega_1 \omega_2 \sim \omega_p$ ,  $n = 10^{16} 10^{17} \, \mathrm{cm}^{-3}$ . An alternative for LWFA.
- **SMLWFA:** LWFA on higher plasma densities.  $n=10^{19}\,\mathrm{cm^{-3}}$ ,  $I\approx 10^{19}\,\mathrm{W\cdot cm^{-2}}$ ,  $L>\lambda_p$ . The plasma "chops up" the long laser pulse. The length of the equidistently spaced train of smaller pulses mathces the plasma wavelength. This train of pulses resonantly excites the plasma.
- Multiple bunches or pulses: larger amplitude plasma waves.



- PWFA: electron/proton bunch drives the wakes.
- **LWFA:** Short ( $\approx$  1 ps), ultra intense  $I \ge 10^{18} \mathrm{W \cdot cm^{-2}}$  pulse.  $L = c\tau_p \approx \lambda_p = 2\pi c/\omega_p$ ,  $n = 10^{15} \mathrm{cm^{-3}}$ .
- **PBWA:** Two laser pulses,  $\omega_1-\omega_2\sim\omega_p$ ,  $n=10^{16}-10^{17}\,\mathrm{cm}^{-3}$ . An alternative for I WFA
- **SMLWFA:** LWFA on higher plasma densities.  $n=10^{19}\,\mathrm{cm^{-3}}$ ,  $I\approx 10^{19}\,\mathrm{W\cdot cm^{-2}}$ ,  $L>\lambda_p$ . The plasma "chops up" the long laser pulse. The length of the equidistently spaced train of smaller pulses mathces the plasma wavelength. This train of pulses resonantly excites the plasma.
- Multiple bunches or pulses: larger amplitude plasma waves.



- PWFA: electron/proton bunch drives the wakes.
- **LWFA:** Short ( $\approx$  1 ps), ultra intense  $I \ge 10^{18} \mathrm{W \cdot cm^{-2}}$  pulse.  $L = c\tau_p \approx \lambda_p = 2\pi c/\omega_p$ ,  $n = 10^{15} \mathrm{cm^{-3}}$ .
- **PBWA:** Two laser pulses,  $\omega_1 \omega_2 \sim \omega_p$ ,  $n = 10^{16} 10^{17} \, \mathrm{cm}^{-3}$ . An alternative for LWFA.
- **SMLWFA:** LWFA on higher plasma densities.  $n=10^{19}\,\mathrm{cm^{-3}}$ ,  $I\approx 10^{19}\,\mathrm{W\cdot cm^{-2}}$ ,  $L>\lambda_p$ . The plasma "chops up" the long laser pulse. The length of the equidistently spaced train of smaller pulses mathces the plasma wavelength. This train of pulses resonantly excites the plasma.
- Multiple bunches or pulses: larger amplitude plasma waves.



- PWFA: electron/proton bunch drives the wakes.
- **LWFA:** Short ( $\approx$  1 ps), ultra intense  $I \ge 10^{18} \mathrm{W \cdot cm^{-2}}$  pulse.  $L = c\tau_p \approx \lambda_p = 2\pi c/\omega_p$ ,  $n = 10^{15} \mathrm{cm^{-3}}$ .
- **PBWA:** Two laser pulses,  $\omega_1 \omega_2 \sim \omega_p$ ,  $n = 10^{16} 10^{17} \, \mathrm{cm}^{-3}$ . An alternative for LWFA.
- **SMLWFA:** LWFA on higher plasma densities.  $n=10^{19}\,\mathrm{cm^{-3}}$ ,  $I\approx 10^{19}\,\mathrm{W\cdot cm^{-2}}$ ,  $L>\lambda_p$ . The plasma "chops up" the long laser pulse. The length of the equidistently spaced train of smaller pulses mathces the plasma wavelength. This train of pulses resonantly excites the plasma.
- Multiple bunches or pulses: larger amplitude plasma waves.



- PWFA: electron/proton bunch drives the wakes.
- **LWFA:** Short ( $\approx$  1 ps), ultra intense  $I \ge 10^{18} \mathrm{W \cdot cm^{-2}}$  pulse.  $L = c\tau_p \approx \lambda_p = 2\pi c/\omega_p$ ,  $n = 10^{15} \mathrm{cm^{-3}}$ .
- **PBWA:** Two laser pulses,  $\omega_1 \omega_2 \sim \omega_p$ ,  $n = 10^{16} 10^{17} \, \mathrm{cm}^{-3}$ . An alternative for LWFA.
- **SMLWFA:** LWFA on higher plasma densities.  $n=10^{19}\,\mathrm{cm^{-3}}$ ,  $I\approx 10^{19}\,\mathrm{W\cdot cm^{-2}}$ ,  $L>\lambda_p$ . The plasma "chops up" the long laser pulse. The length of the equidistently spaced train of smaller pulses mathces the plasma wavelength. This train of pulses resonantly excites the plasma.
- Multiple bunches or pulses: larger amplitude plasma waves.

Short term solution: **PWFA** (CERN AWAKE Experiment)

Long term solution: LWFA



- PWFA: electron/proton bunch drives the wakes.
- **LWFA:** Short ( $\approx$  1 ps), ultra intense  $I \ge 10^{18} \mathrm{W \cdot cm^{-2}}$  pulse.  $L = c\tau_p \approx \lambda_p = 2\pi c/\omega_p$ ,  $n = 10^{15} \mathrm{cm^{-3}}$ .
- **PBWA:** Two laser pulses,  $\omega_1 \omega_2 \sim \omega_p$ ,  $n = 10^{16} 10^{17} \, \mathrm{cm}^{-3}$ . An alternative for LWFA.
- **SMLWFA:** LWFA on higher plasma densities.  $n=10^{19}\,\mathrm{cm^{-3}}$ ,  $I\approx 10^{19}\,\mathrm{W\cdot cm^{-2}}$ ,  $L>\lambda_p$ . The plasma "chops up" the long laser pulse. The length of the equidistently spaced train of smaller pulses mathces the plasma wavelength. This train of pulses resonantly excites the plasma.
- Multiple bunches or pulses: larger amplitude plasma waves.



# OUTLINE

- Introduction
- **2** THEORETICAL BASICS
  - Gaussian Pulses
  - Generalization for Bichromatic Fields
  - Equations of Motion
  - The Presence of an Underdense Plasma
- 3 RESULTS
  - General Remarks
  - Monochromatic Fields
  - Comparison with Experimental Data
  - Bichromatic Fields
- 4 SUMMARY



- Mathematical form of a monochromatic Gaussian Pulse
- Mathematical form of a bichromatic Gaussian Pulse
- © EOM in electromagnetic fields
- Opening with the presence of an Underdense Plasma

- Mathematical form of a monochromatic Gaussian Pulse
- Mathematical form of a bichromatic Gaussian Pulse
- © EOM in electromagnetic fields
- Opening with the presence of an Underdense Plasma

- Mathematical form of a monochromatic Gaussian Pulse
- Mathematical form of a bichromatic Gaussian Pulse
- Dealing with the presence of an Underdense Plasma

Plasma Wakefield Acceleration



- Mathematical form of a monochromatic Gaussian Pulse
- Mathematical form of a bichromatic Gaussian Pulse
- Dealing with the presence of an Underdense Plasma

Gaussian beams can be derived from the paraxial approximation. For a Gaussian pulse, the electric field has the following form:

$$E_{x} = E_{0} \frac{W_{0}}{W(z)} \exp\left[-\frac{r^{2}}{W^{2}(z)}\right] \exp\left(-\frac{\Theta^{2}}{T^{2}}\right) \times \cos\left[\frac{kr^{2}}{2R(z)} - \Phi(z) + \omega\Theta + \sigma\Theta^{2} + \varphi\right]$$

$$E_{y} = 0$$

$$(1a)$$

$$E_{y} = 0$$

$$(1b)$$

$$E_{z} = -\frac{x}{R(z)}E_{x} + E_{0}\frac{2x}{kW^{2}(z)} \cdot \frac{W_{0}}{W(z)} \exp\left[-\frac{r^{2}}{W^{2}(z)}\right] \times \exp\left[-\frac{\Theta^{2}}{T^{2}}\right] \sin\left[\frac{kr^{2}}{2R(z)} - \Phi(z) + \omega\Theta + \sigma\Theta^{2} + \varphi\right]$$
(1c)

For details, see L.W. Davis: Phys. Rev. A 19 (1979), 1177



Gaussian beams can be derived from the paraxial approximation. For a Gaussian pulse, the magnetic field has the following form:

$$B_{x}=0 (2a)$$

$$B_{y} = \frac{E_{x}}{c} \tag{2b}$$

$$B_{z} = \frac{y}{cR(z)}E_{x} + \frac{1}{c}E_{0}\frac{2y}{kW^{2}(z)} \cdot \frac{W_{0}}{W(z)} \exp\left[-\frac{r^{2}}{W^{2}(z)}\right] \times \exp\left[-\frac{\Theta^{2}}{T^{2}}\right] \sin\left[\frac{kr^{2}}{2R(z)} - \Phi(z) + \omega\Theta + \sigma\Theta^{2} + \varphi\right]$$
(2c)

For details, see L.W. Davis: Phys. Rev. A 19 (1979), 1177

A Gaussian pulse given with eqs. (1) and (2) is an approximate solution of Maxwell's equations.



Gaussian beams can be derived from the paraxial approximation. For a Gaussian pulse, the magnetic field has the following form:

$$B_{x}=0 (2a)$$

$$B_{y} = \frac{E_{x}}{c} \tag{2b}$$

$$B_{z} = \frac{y}{cR(z)}E_{x} + \frac{1}{c}E_{0}\frac{2y}{kW^{2}(z)} \cdot \frac{W_{0}}{W(z)} \exp\left[-\frac{r^{2}}{W^{2}(z)}\right] \times \exp\left[-\frac{\Theta^{2}}{T^{2}}\right] \sin\left[\frac{kr^{2}}{2R(z)} - \Phi(z) + \omega\Theta + \sigma\Theta^{2} + \varphi\right]$$
(2c)

For details, see L.W. Davis: Phys. Rev. A 19 (1979), 1177

A Gaussian pulse given with eqs. (1) and (2) is an approximate solution of Maxwell's equations.



The parameters of the Gaussian pulse are the following:

$$W(z) = W_0 \left[ 1 + \left( \frac{z}{z_R} \right)^2 \right]^{1/2}$$
 the spot size, (3a)

$$R(z) = z \left[ 1 + \left( \frac{z_R}{z} \right)^2 \right]$$
 the radius of curvature, (3b)

$$\Phi(z) = \tan^{-1} \frac{z}{z_R} \quad \text{the Gouy phase, and}$$
 (3c)

$$W_0 = \left(\frac{\lambda Z_R}{\pi}\right)^{1/2}$$
 the beam waist. (3d)

and  $z_R$  being the Rayleigh-length. The wavenumber has the form of

$$k = \frac{\omega_0}{c} \left( 1 + \sigma \Theta \right) \tag{4}$$

with  $\omega_0$  being the initial frequency.



At the Rayleigh-length, the area of the beam spot is twice as the minimal size:

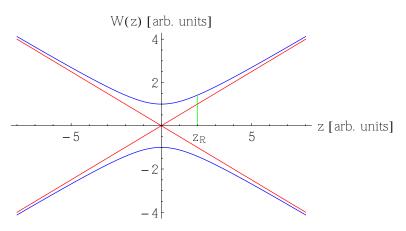
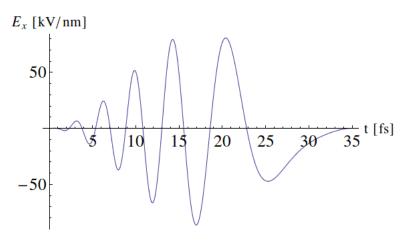


FIGURE: The width of a Gaussian beam as a function of distance along the direction of propagation.

# A chirped laser pulse looks like:





- Gaussian beams may have higher order TEM modes! See:
   H. Kogelik and T. Li: Appl. Opt. 5 (1966), 1550.
- For a system with cylindrical symmetry, it is useful to express the beam in cylindrical coordinates. Cylindrical waves also may have higher order TEM modes.
- Is it possible, based on L.W. Davis: Phys. Rev. A 19 (1979), 1177 to obtain an exact solution of Maxwell's equations?
- If so, does it worth the work?
- Exact beam solutions of the Maxwell's equations can be produced using the Hertz-vector! See: P. Varga and P. and Török, Opt. Commun. 152 (1998), 108–118.

- Gaussian beams may have higher order TEM modes! See:
   H. Kogelik and T. Li: Appl. Opt. 5 (1966), 1550.
- For a system with cylindrical symmetry, it is useful to express the beam in cylindrical coordinates. Cylindrical waves also may have higher order TEM modes.
- Is it possible, based on L.W. Davis: Phys. Rev. A 19 (1979), 1177 to obtain an exact solution of Maxwell's equations?
- If so, does it worth the work?
- Exact beam solutions of the Maxwell's equations can be produced using the Hertz-vector! See: P. Varga and P. and Török, Opt. Commun. 152 (1998), 108–118.

- Gaussian beams may have higher order TEM modes! See:
   H. Kogelik and T. Li: Appl. Opt. 5 (1966), 1550.
- For a system with cylindrical symmetry, it is useful to express the beam in cylindrical coordinates. Cylindrical waves also may have higher order TEM modes.
- Is it possible, based on L.W. Davis: Phys. Rev. A 19 (1979), 1177 to obtain an exact solution of Maxwell's equations?
- If so, does it worth the work?
- Exact beam solutions of the Maxwell's equations can be produced using the Hertz-vector! See: P. Varga and P. and Török, Opt. Commun. 152 (1998), 108–118.

- Gaussian beams may have higher order TEM modes! See:
   H. Kogelik and T. Li: Appl. Opt. 5 (1966), 1550.
- For a system with cylindrical symmetry, it is useful to express the beam in cylindrical coordinates. Cylindrical waves also may have higher order TEM modes.
- Is it possible, based on L.W. Davis: Phys. Rev. A 19 (1979), 1177 to obtain an exact solution of Maxwell's equations?
- If so, does it worth the work?
- Exact beam solutions of the Maxwell's equations can be produced using the Hertz-vector! See: P. Varga and P. and Török, Opt. Commun. 152 (1998), 108–118.

- Gaussian beams may have higher order TEM modes! See:
   H. Kogelik and T. Li: Appl. Opt. 5 (1966), 1550.
- For a system with cylindrical symmetry, it is useful to express the beam in cylindrical coordinates. Cylindrical waves also may have higher order TEM modes.
- Is it possible, based on L.W. Davis: Phys. Rev. A 19 (1979), 1177 to obtain an exact solution of Maxwell's equations?
- If so, does it worth the work?
- Exact beam solutions of the Maxwell's equations can be produced using the Hertz-vector! See: P. Varga and P. and Török, Opt. Commun. 152 (1998), 108–118.

The  $q^{th}$  harmonic of a Gaussian pulse has the following form:

$$E_{q,x} = E_0 \frac{W_0}{W_q(z)} \exp\left[-\frac{r^2}{W_q^2(z)}\right] \exp\left[-\frac{\Theta^2}{T^2}\right] \times$$

$$\cos\left[\frac{k_q r^2}{2R_q(z)} - \Phi_q(z) + q\Theta + q^2 \sigma \Theta^2 + \varphi_q\right],$$

$$E_{q,y} = 0,$$

$$E_{q,z} = -\frac{x}{R_q(z)} E_{q,x} +$$

$$\frac{2x}{k_q W_q^2(z)} \cdot \frac{W_0}{W_q(z)} \exp\left[-\frac{r^2}{W_q(z)}\right] \exp\left[-\frac{\Theta^2}{(\omega_0 T)^2}\right] \times$$

$$\sin\left[\frac{k_q r^2}{2R_q(z)} - \Phi_q(z) + q\Theta + q^2 \sigma \Theta_q^2 + \varphi_q\right]$$
(5a)
$$(5b)$$

$$B_{q,x}=0, (6a)$$

$$B_{q,y} = \frac{E_{q,x}}{c},\tag{6b}$$

$$B_{q,z} = \frac{y}{cR_q(z)} E_{q,x} +$$

$$\frac{1}{c}E_0 \frac{2y}{k_q W_q^2(z)} \cdot \frac{W_0}{W_q(z)} \exp\left[-\frac{r^2}{W_q^2(z)}\right] \exp\left[-\frac{\Theta^2}{T^2}\right] \times \tag{6c}$$

$$\sin\left[\frac{k_q r^2}{2R_q(z)} - \Phi_q(z) + q\Theta + q^2 \sigma \Theta^2 + \phi_q\right]$$

The parameters of the higher harmonic are:

$$W_q(z) = W_{q,0} \left[ 1 + \left( \frac{z}{z_{q,R}} \right)^2 \right]^{1/2}$$
 the spot size, (7a)

$$R_q(z) = z \left[ 1 + \left( \frac{Z_{q,R}}{z} \right)^2 \right]$$
 the radius of curvature, (7b)

$$\Phi_q(z) = \tan^{-1} \frac{z}{z_{q,R}}$$
 the Gouy phase, and (7c)

$$W_{q,0} = \left(\frac{\lambda Z_{q,R}}{\pi}\right)^{1/2}$$
 the beam waist. (7d)

and  $z_{a,R}$  being the Rayleigh-length. The wavenumber has the form of

$$k = q \frac{\omega_0}{c} \left( 1 + q \sigma_q \Theta \right) \tag{8}$$

with  $q\omega_0$  being the initial frequency of the  $q^{ ext{th}}$  harmonic.

Finally, the general form of a bichromatic field:

$$\mathbf{E} = \mathbf{E}_1 + \frac{A}{q} \mathbf{E}_q, \tag{9a}$$

$$\mathbf{B} = \mathbf{B}_1 + \frac{A}{q} \mathbf{B}_q \tag{9b}$$

with  $\mathbf{E}_1$  and  $\mathbf{B}_1$  being the electric and magnetic fields of the main harmonic and  $0 \le A \le 1$  the relative amplitude of the harmonics.

### A bichromatic pulse looks like:

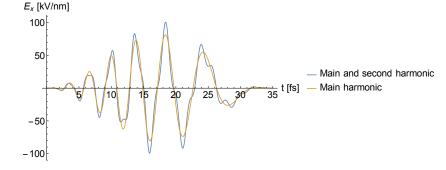


FIGURE: A bichromatic (main and second harmonic) pulse, compared with the corresponding monochromatic (main harmonic) component.

### The Lorentz-Force acting on the electron:

$$\mathbf{F} = e(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \tag{10}$$

Equations of Motion for a relativistic electron

$$\frac{\mathrm{d}\gamma}{\mathrm{d}t} = \frac{1}{m_e c^2} \mathbf{F} \cdot \mathbf{v} \tag{11a}$$

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = e\left(\mathbf{E} + \frac{\mathbf{p}}{m_{\mathrm{e}}\gamma} \times \mathbf{B}\right) \tag{11b}$$

 $\mathbf{E}(t,\mathbf{r}) = \mathbf{E}(\Theta(t,\mathbf{r}))$  and  $\mathbf{B}(t,\mathbf{r}) = \mathbf{B}(\Theta(t,\mathbf{r}))$ , respectively, with

$$\Theta(t,\mathbf{r}) := t - \mathbf{n} \cdot \frac{\mathbf{r}}{c}.\tag{12}$$

being the retarded time



The Lorentz-Force acting on the electron:

$$\mathbf{F} = \mathbf{e} \left( \mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \tag{10}$$

Equations of Motion for a relativistic electron:

$$\frac{\mathrm{d}\gamma}{\mathrm{d}t} = \frac{1}{m_{\mathrm{e}}c^2} \mathbf{F} \cdot \mathbf{v} \tag{11a}$$

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \mathbf{e}\left(\mathbf{E} + \frac{\mathbf{p}}{m_{\mathbf{e}}\gamma} \times \mathbf{B}\right) \tag{11b}$$

 $\mathbf{E}(t,\mathbf{r}) = \mathbf{E}(\Theta(t,\mathbf{r}))$  and  $\mathbf{B}(t,\mathbf{r}) = \mathbf{B}(\Theta(t,\mathbf{r}))$ , respectively, with

$$\Theta(t,\mathbf{r}) := t - \mathbf{n} \cdot \frac{\mathbf{r}}{c}.\tag{12}$$

being the retarded time



The Lorentz-Force acting on the electron:

$$\mathbf{F} = \mathbf{e} \left( \mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \tag{10}$$

Equations of Motion for a relativistic electron:

$$\frac{\mathrm{d}\gamma}{\mathrm{d}t} = \frac{1}{m_{\mathrm{e}}c^2} \mathbf{F} \cdot \mathbf{v} \tag{11a}$$

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \mathbf{e}\left(\mathbf{E} + \frac{\mathbf{p}}{m_{\mathbf{e}}\gamma} \times \mathbf{B}\right) \tag{11b}$$

 $\mathbf{E}(t,\mathbf{r}) = \mathbf{E}(\Theta(t,\mathbf{r}))$  and  $\mathbf{B}(t,\mathbf{r}) = \mathbf{B}(\Theta(t,\mathbf{r}))$ , respectively, with

$$\Theta(t,\mathbf{r}) := t - \mathbf{n} \cdot \frac{\mathbf{r}}{c}.\tag{12}$$

being the retarded time



The presence of an Underdense Plasma can be taken into account via it's  $n_m$  index of refraction!

$$n_m = \sqrt{1 - \frac{\omega_p^2}{\omega_L^2}}$$
 and  $\omega_p^2 = \frac{n_e e^2}{\varepsilon_0 m_e}$  (13)

$$\Theta(t, \mathbf{r}, n_m) := t - n_m \mathbf{n} \cdot \frac{\mathbf{r}}{c}. \tag{14}$$

The presence of an Underdense Plasma can be taken into account via it's  $n_m$  index of refraction!

$$n_m = \sqrt{1 - \frac{\omega_p^2}{\omega_L^2}}$$
 and  $\omega_p^2 = \frac{n_e e^2}{\varepsilon_0 m_e}$  (13)

$$\Theta(t, \mathbf{r}, n_m) := t - n_m \mathbf{n} \cdot \frac{\mathbf{r}}{c}. \tag{14}$$

The presence of an Underdense Plasma can be taken into account via it's  $n_m$  index of refraction!

$$n_m = \sqrt{1 - \frac{\omega_p^2}{\omega_L^2}}$$
 and  $\omega_p^2 = \frac{n_e e^2}{\varepsilon_0 m_e}$  (13)

The retarded time, including the index of refraction:

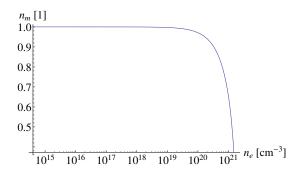
$$\Theta(t,\mathbf{r},n_m):=t-n_m\mathbf{n}\cdot\frac{\mathbf{r}}{c}.$$
 (14)

### **O**UTLINE

- Introduction
- 2 THEORETICAL BASICS
  - Gaussian Pulses
  - Generalization for Bichromatic Fields
  - Equations of Motion
  - The Presence of an Underdense Plasma
- RESULTS
  - General Remarks
  - Monochromatic Fields
  - Comparison with Experimental Data
  - Bichromatic Fields
- 4 SUMMARY



The relevant plasma densities are far below the critical density. At  $\lambda = 800 \, \text{nm}, \, n_c = 1.74196 \cdot 10^{21} \, \text{cm}^{-3}.$ 



 $n_m(10^{15}\,\mathrm{cm}^3) \approx n_m(0) \Rightarrow \Theta(t,\mathbf{r},n_m) \approx \Theta(t,\mathbf{r})$ 

The relevant plasma densities are far below the critical density. At  $\lambda = 800 \, \mathrm{nm}$ ,  $n_c = 1.74196 \cdot 10^{21} \, \mathrm{cm}^{-3}$ .

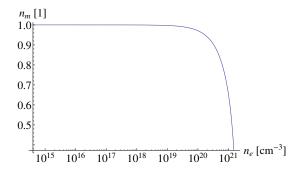


FIGURE: The index of refraction as a function of plasma electron density.

 $n_m(10^{15}\,\mathrm{cm}^3) \approx n_m(0) \Rightarrow \Theta(t,\mathbf{r},n_m) \approx \Theta(t,\mathbf{r})$ ACCELERATION IN UNDERDENSE PLASMAS CAN BE WELL APPROXIMATED BY ACCELERATION IN VACUUM!

23 / 31

The relevant plasma densities are far below the critical density. At  $\lambda = 800 \, \mathrm{nm}$ ,  $n_c = 1.74196 \cdot 10^{21} \, \mathrm{cm}^{-3}$ .

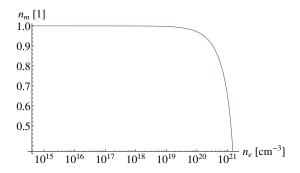


FIGURE: The index of refraction as a function of plasma electron density.

$$n_m(10^{15}\,\mathrm{cm}^3) \approx n_m(0) \Rightarrow \Theta(t,\mathbf{r},n_m) \approx \Theta(t,\mathbf{r})$$

ACCELERATION IN UNDERDENSE PLASMAS CAN BE WELL



The relevant plasma densities are far below the critical density. At  $\lambda = 800 \, \mathrm{nm}$ ,  $n_c = 1.74196 \cdot 10^{21} \, \mathrm{cm}^{-3}$ .

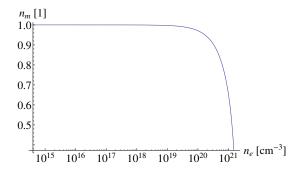


FIGURE: The index of refraction as a function of plasma electron density.

$$n_m(10^{15}\,\mathrm{cm}^3) \approx n_m(0) \Rightarrow \Theta(t,\mathbf{r},n_m) \approx \Theta(t,\mathbf{r})$$
  
ACCELERATION IN UNDERDENSE PLASMAS CAN BE WELL APPROXIMATED BY ACCELERATION IN VACUUM!

- Only chirped pulses provide non-negligible acceleration.
- The electron has to be on-axis and propagate parallel with the pulse.
- Larger beam waists provide more energy gain.
- Shorter pulses provide more energy gain.
- With a Gaussian pulse of  $\lambda=800\,\mathrm{nm}$  wavelength,  $T=30\,\mathrm{fs}$  pulse duration,  $I=10^{21}\,\mathrm{W\cdot cm^{-2}}$  intensity and  $W_0=100\lambda$  beam waist, an energy gain of 270 MeV pro pulse can be achieved.

**Monochromatic Fields** 

- Only chirped pulses provide non-negligible acceleration.
- The electron has to be on-axis and propagate parallel with the pulse.
- Larger beam waists provide more energy gain.
- Shorter pulses provide more energy gain.
- With a Gaussian pulse of  $\lambda = 800 \, \mathrm{nm}$  wavelength,  $T = 30 \, \mathrm{fs}$  pulse duration,  $I = 10^{21} \, \mathrm{W \cdot cm^{-2}}$  intensity and  $W_0 = 100 \lambda$  beam waist, an energy gain of 270 MeV pro pulse can be achieved.

**Monochromatic Fields** 

- Only chirped pulses provide non-negligible acceleration.
- The electron has to be on-axis and propagate parallel with the pulse.
- Larger beam waists provide more energy gain.
- Shorter pulses provide more energy gain.
- With a Gaussian pulse of  $\lambda = 800 \, \mathrm{nm}$  wavelength,  $T = 30 \, \mathrm{fs}$  pulse duration,  $I = 10^{21} \, \mathrm{W \cdot cm^{-2}}$  intensity and  $W_0 = 100 \lambda$  beam waist, an energy gain of 270 MeV pro pulse can be achieved.

- Only chirped pulses provide non-negligible acceleration.
- The electron has to be on-axis and propagate parallel with the pulse.
- Larger beam waists provide more energy gain.
- Shorter pulses provide more energy gain.
- With a Gaussian pulse of  $\lambda = 800 \, \mathrm{nm}$  wavelength,  $T = 30 \, \mathrm{fs}$  pulse duration,  $I = 10^{21} \, \mathrm{W \cdot cm^{-2}}$  intensity and  $W_0 = 100 \lambda$  beam waist, an energy gain of 270 MeV pro pulse can be achieved.

- Only chirped pulses provide non-negligible acceleration.
- The electron has to be on-axis and propagate parallel with the pulse.
- Larger beam waists provide more energy gain.
- Shorter pulses provide more energy gain.
- With a Gaussian pulse of  $\lambda = 800 \, \mathrm{nm}$  wavelength,  $T = 30 \, \mathrm{fs}$  pulse duration,  $I = 10^{21} \, \mathrm{W \cdot cm^{-2}}$  intensity and  $W_0 = 100 \lambda$  beam waist, an energy gain of 270 MeV pro pulse can be achieved.

- Only chirped pulses provide non-negligible acceleration.
- The electron has to be on-axis and propagate parallel with the pulse.
- Larger beam waists provide more energy gain.
- Shorter pulses provide more energy gain.
- With a Gaussian pulse of  $\lambda = 800 \, \mathrm{nm}$  wavelength,  $T = 30 \, \mathrm{fs}$  pulse duration,  $I = 10^{21} \, \mathrm{W} \cdot \mathrm{cm}^{-2}$  intensity and  $W_0 = 100 \lambda$  beam waist, an energy gain of 270 MeV pro pulse can be achieved.

|                       | Our Results                           | Kneip <i>et. al</i><br>Phys. Rev. Lett. <b>103</b><br>(2009), 035002 |
|-----------------------|---------------------------------------|----------------------------------------------------------------------|
| Wavelength            | 800 nm                                | 800 nm                                                               |
| Pulse Duration        | 30 fs                                 | 55 fs                                                                |
| Intensity             | 10 <sup>21</sup> W ⋅ cm <sup>-2</sup> | 10 <sup>19</sup> W ⋅ cm <sup>-2</sup>                                |
| Beam Waist            | 100λ                                  | 10 mm                                                                |
| Total Pulse Energy    | 9.6 J                                 | 10 J                                                                 |
| Average Power         | 320 TW                                | 180 TW                                                               |
| Energy gain           | 275 MeV (on 5 mm)                     | 420 MeV (on 5 mm)                                                    |
|                       |                                       | 800 MeV (on 10 mm)                                                   |
| Accelerating Gradient | 58 GVm <sup>-1</sup>                  | 80 GVm <sup>-1</sup>                                                 |

OUR RESULTS AGREE WITHIN A FACTOR OF TWO WITH THE **EXPERIMENTAL DATA!** 



Summarizing the results (see: doi: 10.1016/j.nimb.2015.10.013; (M.A. Pocsai, S. Varró, I.F. Barna, article in press))

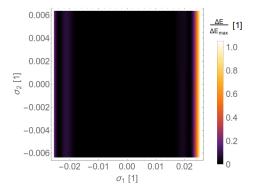


FIGURE: The relative energy gain as a function of the chirp parameters.  $\Delta E$  depends very weakly on  $\sigma_2$ .  $\lambda = 800 \, \mathrm{nm}$ ,  $T = 5 \, \mathrm{fs}$ ,  $I = 8.544 \cdot 10^{18} \, \mathrm{W} \cdot \mathrm{cm}^2$ ,  $W_0 = 0.8 \, \mu \mathrm{m}$ , A = 0.1,  $\varphi_1 = 2.058$ .



Summarizing the results (see: doi: 10.1016/j.nimb.2015.10.013; (M.A. Pocsai, S. Varró, I.F. Barna, article in press))

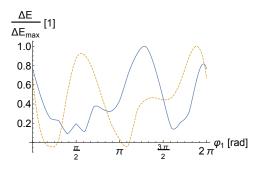


FIGURE : The relative energy gain as a function of the carrier–envelope phase.  $\lambda = 800 \, \mathrm{nm}, \ T = 5 \, \mathrm{fs}, \ \sigma_1 = 0.0471 \, \mathrm{fs}^{-2}, \ \sigma_2 = 0, \ A = 0.24.$   $I = 10^{20} \, \mathrm{W} \cdot \mathrm{cm}^{-2}, \ W_0 = 8.976 \, \mu \mathrm{m}$  (solid line),  $a_0 = 3 \cdot 10^{20} \, \mathrm{W} \cdot \mathrm{cm}^{-2}, \ W_0 = 8 \, \mu \mathrm{m}$  (dashed line).

Summarizing the results (see: doi: 10.1016/j.nimb.2015.10.013; (M.A. Pocsai, S. Varró, I.F. Barna, article in press))

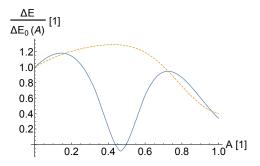


FIGURE : The relative energy gain as a function of the relative amplitude of the harmonics. The second harmonic enhanced the energy gain by about 20 - 30 %, compared to the monochromatic case.  $\lambda=800$  nm, T=5 fs,  $\sigma_1=0.0471$  fs $^{-2},\,\sigma_2=0.$   $I=10^{20}$  W  $\cdot$  cm $^{-2},\,W_0=8$   $\mu$ m,  $\varphi_1=0$  (solid line),  $a_0=3\cdot10^{20}$  W  $\cdot$  cm $^{-2},\,W_0=8.976$   $\mu$ m,  $\varphi_1=0$  (dashed line).

## **OUTLINE**

- Introduction
- 2 THEORETICAL BASICS
  - Gaussian Pulses
  - Generalization for Bichromatic Fields
  - Equations of Motion
  - The Presence of an Underdense Plasma
- 3 RESULTS
  - General Remarks
  - Monochromatic Fields
  - Comparison with Experimental Data
  - Bichromatic Fields
- SUMMARY



- A simple but (computationally) efficient model has been presented.
- Chirped Gaussian pulses can transfer up to 270 MeV energy to a single electron.
- The addition of the second harmonic boosts the energy transfer to the electron by even 30 %—it is tempting to use a bichromatic driver pulse for electron acceleration.
- The results obtained with our simple model agree quite well with the experimental data.

- A simple but (computationally) efficient model has been presented.
- Chirped Gaussian pulses can transfer up to 270 MeV energy to a single electron.
- The addition of the second harmonic boosts the energy transfer to the electron by even 30 %—it is tempting to use a bichromatic driver pulse for electron acceleration.
- The results obtained with our simple model agree quite well with the experimental data.

- A simple but (computationally) efficient model has been presented.
- Chirped Gaussian pulses can transfer up to 270 MeV energy to a single electron.
- The addition of the second harmonic boosts the energy transfer to the electron by even 30 %—it is tempting to use a bichromatic driver pulse for electron acceleration.
- The results obtained with our simple model agree quite well with the experimental data.

- A simple but (computationally) efficient model has been presented.
- Chirped Gaussian pulses can transfer up to 270 MeV energy to a single electron.
- The addition of the second harmonic boosts the energy transfer to the electron by even 30 %—it is tempting to use a bichromatic driver pulse for electron acceleration.
- The results obtained with our simple model agree quite well with the experimental data.

# THANK YOU FOR YOUR ATTENTION!