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Introduction

State-of-the-Art technology: circular accelerator, 8.3 T, 14 TeV
Limit: accelerating field < 50 MV/m
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Introduction

How further→ VLHC? Extremely Expensive!
(Future Circular Collider Kick Off Meeting, Feb. 2014, Geneva)
New, cheaper technologies are needed→ Plasma based acceleration!
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Introduction

New technology: particle acceleration by plasma waves. The possible
methods are (E. Esarey et. al: Rev. Mod. Phys. 81 (2009), 1229):

PWFA: electron/proton bunch drives the wakes.
LWFA: Short (≈ 1 ps), ultra intense I ≥ 1018W · cm−2 pulse.
L = cτp ≈ λp = 2πc/ωp, n = 1015 cm−3.
PBWA: Two laser pulses, ω1 − ω2 ∼ ωp, n = 1016 − 1017 cm−3. An
alternative for LWFA.
SMLWFA: LWFA on higher plasma densities. n = 1019 cm−3,
I ≈ 1019 W · cm−2, L > λp. The plasma "chops up" the long laser
pulse. The length of the equidistently spaced train of smaller
pulses mathces the plasma wavelength. This train of pulses
resonantly excites the plasma.
Multiple bunches or pulses: larger amplitude plasma waves.

Short term solution: PWFA (CERN AWAKE Experiment)
Long term solution: LWFA

Mihály András Pocsai (Wigner/PTE) Plasma Wakefield Acceleration 7th–11th of December, 2015 6 / 31



Theoretical Basics

OUTLINE

1 INTRODUCTION

2 THEORETICAL BASICS
Gaussian Pulses
Generalization for Bichromatic Fields
Equations of Motion
The Presence of an Underdense Plasma

3 RESULTS
General Remarks
Monochromatic Fields
Comparison with Experimental Data
Bichromatic Fields

4 SUMMARY

Mihály András Pocsai (Wigner/PTE) Plasma Wakefield Acceleration 7th–11th of December, 2015 7 / 31



Theoretical Basics

The following theoretical basics are going to be over-viewed:
1 Mathematical form of a monochromatic Gaussian Pulse
2 Mathematical form of a bichromatic Gaussian Pulse
3 EOM in electromagnetic fields
4 Dealing with the presence of an Underdense Plasma
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Theoretical Basics Gaussian Pulses

Gaussian beams can be derived from the paraxial approximation. For
a Gaussian pulse, the electric field has the following form:
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For details, see L.W. Davis: Phys. Rev. A 19 (1979), 1177
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Theoretical Basics Gaussian Pulses

Gaussian beams can be derived from the paraxial approximation. For
a Gaussian pulse, the magnetic field has the following form:

Bx = 0 (2a)
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For details, see L.W. Davis: Phys. Rev. A 19 (1979), 1177

A Gaussian pulse given with eqs. (1) and (2) is an approximate
solution of Maxwell’s equations.
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Theoretical Basics Gaussian Pulses

The parameters of the Gaussian pulse are the following:

W (z) = W0

[
1 +

(
z
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the spot size, (3a)
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Φ(z) = tan−1 z
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(
λzR

π
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the beam waist. (3d)

and zR being the Rayleigh-length. The wavenumber has the form of

k =
ω0

c
(1 + σΘ) (4)

with ω0 being the initial frequency.
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Theoretical Basics Gaussian Pulses

At the Rayleigh-length, the area of the beam spot is twice as the
minimal size:
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FIGURE : The width of a Gaussian beam as a function of distance along the
direction of propagation.
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Theoretical Basics Gaussian Pulses

A chirped laser pulse looks like:
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Theoretical Basics Gaussian Pulses

Gaussian beams may have higher order TEM modes! See:
H. Kogelik and T. Li: Appl. Opt. 5 (1966), 1550.
For a system with cylindrical symmetry, it is useful to express the
beam in cylindrical coordinates. Cylindrical waves also may have
higher order TEM modes.
Is it possible, based on L.W. Davis: Phys. Rev. A 19 (1979), 1177
to obtain an exact solution of Maxwell’s equations?
If so, does it worth the work?
Exact beam solutions of the Maxwell’s equations can be produced
using the Hertz-vector! See: P. Varga and P. and Török,
Opt. Commun. 152 (1998), 108–118.
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Theoretical Basics Generalization for Bichromatic Fields

The qth harmonic of a Gaussian pulse has the following form:
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Theoretical Basics Generalization for Bichromatic Fields

The qth harmonic of a Gaussian pulse has the following form:

Bq,x = 0, (6a)
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Theoretical Basics Generalization for Bichromatic Fields

The parameters of the higher harmonic are:
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and zq,R being the Rayleigh-length.The wavenumber has the form of

k = q
ω0

c
(1 + qσqΘ) (8)

with qω0 being the initial frequency of the qth harmonic.
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Theoretical Basics Generalization for Bichromatic Fields

Finally, the general form of a bichromatic field:

E = E1 +
A
q

Eq, (9a)

B = B1 +
A
q

Bq (9b)

with E1 and B1 being the electric and magnetic fields of the main
harmonic and 0 ≤ A ≤ 1 the relative amplitude of the harmonics.
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Theoretical Basics Generalization for Bichromatic Fields

A bichromatic pulse looks like:
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FIGURE : A bichromatic (main and second harmonic) pulse, compared with
the corresponding monochromatic (main harmonic) component.

Mihály András Pocsai (Wigner/PTE) Plasma Wakefield Acceleration 7th–11th of December, 2015 19 / 31



Theoretical Basics Equations of Motion

The Lorentz-Force acting on the electron:

F = e (E + v× B) (10)

Equations of Motion for a relativistic electron:

dγ
dt

=
1

mec2 F · v (11a)

dp
dt

= e
(

E +
p

meγ
× B

)
(11b)

E(t , r) = E(Θ(t , r)) and B(t , r) = B(Θ(t , r)), respectively, with

Θ(t , r) := t − n · r
c
. (12)

being the retarded time
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Theoretical Basics The Presence of an Underdense Plasma

The presence of an Underdense Plasma can be taken into account via
it’s nm index of refraction!

nm =

√
1−

ω2
p

ω2
L

and ω2
p =
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ε0me
(13)

The retarded time, including the index of refraction:

Θ(t , r,nm) := t − nmn · r
c
. (14)
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Results General Remarks

The relevant plasma densities are far below the critical density. At
λ = 800 nm, nc = 1.74196 · 1021 cm−3.
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FIGURE : The index of refraction as a function of plasma electron density.

nm(1015 cm3) ≈ nm(0)⇒ Θ(t , r,nm) ≈ Θ(t , r)
ACCELERATION IN UNDERDENSE PLASMAS CAN BE WELL

APPROXIMATED BY ACCELERATION IN VACUUM!
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Results Monochromatic Fields

For Gaussian laser pulses, the following results can be obtained (see:
M.A. Pocsai, S. Varró, I.F. Barna: Laser and Particle Beams 33 (2015),
307–313):

Only chirped pulses provide non-negligible acceleration.
The electron has to be on-axis and propagate parallel with the
pulse.
Larger beam waists provide more energy gain.
Shorter pulses provide more energy gain.
With a Gaussian pulse of λ = 800 nm wavelength, T = 30 fs pulse
duration, I = 1021 W · cm−2 intensity and W0 = 100λ beam waist,
an energy gain of 270 MeV pro pulse can be achieved.
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Results Comparison with Experimental Data

Our Results
Kneip et. al
Phys. Rev. Lett. 103
(2009), 035002

Wavelength 800 nm 800 nm
Pulse Duration 30 fs 55 fs
Intensity 1021 W · cm−2 1019 W · cm−2

Beam Waist 100λ 10 mm
Total Pulse Energy 9.6 J 10 J
Average Power 320 TW 180 TW

Energy gain 275 MeV (on 5 mm)
420 MeV (on 5 mm)
800 MeV (on 10 mm)

Accelerating Gradient 58 GVm−1 80 GVm−1

OUR RESULTS AGREE WITHIN A FACTOR OF TWO WITH THE

EXPERIMENTAL DATA!
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Results Bichromatic Fields

Summarizing the results (see: doi: 10.1016/j.nimb.2015.10.013;
(M.A. Pocsai, S. Varró, I.F. Barna, article in press))

FIGURE : The relative energy gain as a function of the chirp parameters. ∆E
depends very weakly on σ2. λ = 800 nm, T = 5 fs, I = 8.544 · 1018 W · cm2,
W0 = 0.8µm, A = 0.1, ϕ1 = 2.058.

Mihály András Pocsai (Wigner/PTE) Plasma Wakefield Acceleration 7th–11th of December, 2015 26 / 31



Results Bichromatic Fields

Summarizing the results (see: doi: 10.1016/j.nimb.2015.10.013;
(M.A. Pocsai, S. Varró, I.F. Barna, article in press))
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FIGURE : The relative energy gain as a function of the carrier–envelope
phase. λ = 800 nm, T = 5 fs, σ1 = 0.0471fs−2, σ2 = 0, A = 0.24.
I = 1020 W · cm−2, W0 = 8.976µm (solid line), a0 = 3 · 1020 W · cm−2,
W0 = 8µm (dashed line).

Mihály András Pocsai (Wigner/PTE) Plasma Wakefield Acceleration 7th–11th of December, 2015 27 / 31



Results Bichromatic Fields

Summarizing the results (see: doi: 10.1016/j.nimb.2015.10.013;
(M.A. Pocsai, S. Varró, I.F. Barna, article in press))
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FIGURE : The relative energy gain as a function of the relative amplitude of
the harmonics. The second harmonic enhanced the energy gain by about
20− 30 %, compared to the monochromatic case. λ = 800 nm, T = 5 fs,
σ1 = 0.0471 fs−2, σ2 = 0. I = 1020 W · cm−2, W0 = 8µm, ϕ1 = 0 (solid line),
a0 = 3 · 1020 W · cm−2, W0 = 8.976µm, ϕ1 = 0 (dashed line).
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Summary

A simple but (computationally) efficient model has been
presented.
Chirped Gaussian pulses can transfer up to 270 MeV energy to a
single electron.
The addition of the second harmonic boosts the energy transfer to
the electron by even 30 %—it is tempting to use a bichromatic
driver pulse for electron acceleration.
The results obtained with our simple model agree quite well with
the experimental data.
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THANK YOU FOR YOUR ATTENTION!
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