Description of oscillating HBT radii in Buda-Lund hydrodynamical model

Máté Csanád, Sándor Lökös, Boris Tomášik and Tamás Csörgő

Zimányi School, 2015

Introduction

- QGP behaves like perfect fluid \rightarrow hydro description
- Finite number of nucleons \rightarrow generalized geometry is necessary
- Generalize the space-time and the velocity field distribution
- Higher order flows can be investigated
- HBT radii have $\cos (n \phi)$ dependences in the respective reaction plane
- These can be studied experimentally:

Nucl.Phys. A904-905 (2013) 439c-442c
Phys.Rev.Lett. 112 (2014) 22, 222301

The Buda-Lund model

Phys.Rev. C54 (1996) 1390 and Nucl.Phys. A742 (2004) 80-94

- Hydro-model: $S(x, p)=\frac{g}{(2 \pi)^{3}} \frac{p^{\nu} d^{4} \Sigma_{\nu}(x)}{B(x, p)+s_{q}}$ where $B(x, p)=\exp \left[\frac{p^{\nu} u_{\nu}(x)-\mu(x)}{T(x)}\right]$ is the Boltzmann phase-space distribution and the $p^{\nu} d^{4} \Sigma_{\nu}(x)=p^{\nu} u_{\nu} H(\tau) d^{4} x$
- Spatial elliptical asymmetry is ensured by the scaling variable

$$
s=\frac{r_{x}^{2}}{2 X^{2}}+\frac{r_{y}^{2}}{2 Y^{2}}+\frac{r_{z}^{2}}{2 Z^{2}} \rightarrow \frac{r^{2}}{2 R^{2}}\left(1+\epsilon_{2} \cos (2 \phi)\right)+\frac{r_{z}^{2}}{2 Z^{2}}
$$

- The asymmetry in the velocity field is also elliptical
$u_{\mu}=\left(\gamma, r_{x} \frac{\dot{X}}{X}, r_{y} \frac{\dot{Y}}{Y}, r_{z} \frac{\dot{Z}}{Z}\right) \rightarrow\left(\gamma, r H\left(1+\chi_{2}\right) \cos \phi, r H\left(1-\chi_{2}\right) \sin \phi, H_{z} r_{z}\right)$

The Buda-Lund model

- The model describes spectra, flows, HBT radii
- Result for elliptic flow: measure of hydrodynamic behavior

$$
v_{2 n}\left(p_{t}\right)=\frac{I_{n}(w)}{l_{0}(w)} \text { with } w=\frac{\bar{E}_{T}}{2 T_{*}} \epsilon
$$

Universal scaling: Eur.Phys.J.A38:363-368,2008

Generalization of the model I.

- The spatial asymmetry is described by the scaling variable
- General n-pole spatial asymmetry (elliptical case: $n=2$):

$$
s=\frac{r^{2}}{2 R^{2}}\left(1+\sum_{n} \epsilon_{n} \cos \left(n\left(\phi-\Psi_{n}\right)\right)\right)+\frac{r_{z}^{2}}{2 Z^{2}}
$$

- Ψ_{n} is the angle of the n-th order reaction plane

Generalization of the model II.

- Derive the velocity field from a potential: $u_{\mu}=\gamma\left(1, \partial_{x} \Phi, \partial_{y} \Phi, \partial_{z} \Phi\right)$
- General n-pole asymmetrical potential (elliptical case: $n=2$):

$$
\Phi=r^{2} \frac{H}{2}\left(1+\sum_{n} \chi_{n} \cos \left(n\left(\phi-\Psi_{n}\right)\right)\right)+\frac{H_{z}}{2} r_{z}^{2}
$$

- $u^{\mu} \partial_{\mu} s=0$ can be held if $\dot{\epsilon}_{n}=-2 H \chi_{n}$ in $\mathcal{O}\left(\epsilon_{n}\right), \mathcal{O}\left(\chi_{n}\right)$
- There is multipole solution: Phys.Rev.C90,054911 (2014) based on HeavylonPhys.A21:73-84,2004
- There is no solution with generalized velocity field

Observables at freeze-out

- Invariant transverse momentum distribution, flows, azimuthally sensitive HBT radii
- All asymmetries are investigated in their respective reaction plane
- Rotate the system to the second / third order plane and average on the angle of the third / second order plane

Averaging on event planes

- The spatial asymmetry:

$$
s=\frac{r^{2}}{R^{2}}\left(1+\epsilon_{2} \cos \left(2 \phi-\Psi_{2}\right)+\epsilon_{3} \cos \left(3 \phi-\Psi_{3}\right)\right)+\frac{r_{2}^{2}}{Z^{2}}
$$

- If we rotate the system to the second order event plane:

$$
s=\frac{r^{2}}{R^{2}}\left(1+\epsilon_{2} \cos (2 \phi)+\epsilon_{3} \cos \left(3 \phi-\Delta \Psi_{2,3}\right)\right)+\frac{r_{z}^{2}}{Z^{2}}
$$

- If we rotate the system to the third order event plane:

$$
s=\frac{r^{2}}{R^{2}}\left(1+\epsilon_{2} \cos \left(2 \phi+\Delta \Psi_{2,3}\right)+\epsilon_{3} \cos (3 \phi)\right)+\frac{r_{z}^{2}}{Z^{2}}
$$

where $\Delta \Psi_{2,3}=\Psi_{3}-\Psi_{2}$.

- The method is the same in the case of the velocity field.
- Averaging on $\Delta \Psi_{2,3}$ is necessary.

Invariant momentum distribution

Significant change could be at high p_{t}, the log slope is not affected strongly

Flows

Elliptic and triangular flows are affected by their own asymmetry parameters

Mixing of parameters

- The parameters affect the flows together
- The generalization of velocity field is necessary

HBT radii

- Calculate in the out - side - long system

$$
R_{\text {out }}^{2}=\left\langle r_{\text {out }}^{2}\right\rangle-\left\langle r_{\text {out }}\right\rangle^{2} \text { and } R_{\text {side }}^{2}=\left\langle r_{\text {side }}^{2}\right\rangle-\left\langle r_{\text {side }}\right\rangle^{2}
$$

where $r_{\text {out }}=r \cos (\phi-\alpha)-\beta_{t} t$ and $r_{\text {side }}=r \sin (\phi-\alpha)$
\rightarrow C. J. Plumberg, C. Shen, U. W. Heinz Phys.Rev. C88 (2013) 044914

- There can be higher order parts
\rightarrow B. Tomášik and U. A. Wiedemann, in QGP3, pp. 715-777.
- We use the following parameterization in
- elliptical case:

$$
R_{\mathrm{out}}^{2}=R_{\mathrm{out}, 0}^{2}+R_{\mathrm{out}, 2}^{2} \cos (2 \alpha)++R_{\mathrm{out}, 4}^{2} \cos (4 \alpha)+R_{\mathrm{out}, 6}^{2} \cos (6 \alpha)
$$

- triangular case:

$$
R_{\mathrm{out}}^{2}=R_{\mathrm{out}, 0}^{2}+R_{\mathrm{out}, 3}^{2} \cos (3 \alpha)+R_{\mathrm{out}, 6}^{2} \cos (6 \alpha)+R_{\mathrm{out}, 9}^{2} \cos (9 \alpha)
$$

- Similar to the $R_{\text {side }}^{2}$

Results of the parametrization - Second order case

This case already have been investigated: Eur.Phys.J.A37:111-119,2008 Mainly $\cos (2 \phi)$ behavior but higher order oscillations are also present

Results of the parametrization - Third order case

Mainly $\cos (3 \phi)$ behavior but higher order oscillations are also present

Mixing of the parameters

The dependence of the amplitudes of the $R_{\text {out }}^{2}$ and $R_{\text {side }}^{2}$ in the second order case

Mixing of the parameters

The dependence of the amplitudes of the $R_{\text {out }}^{2}$ and $R_{\text {side }}^{2}$ in the third order case

Conclusions

- Generalization of the spatial and the velocity field distribution is done
- The averaging between the different event plane is necessary
- Higher order oscillation can be observed in HBT radii
- Absolute value of the azimuthal HBT radii depend on asymmetries
- The spatial and velocity field anisotropies both influence the v_{n} coefficient and the HBT radii
- The asymmetry parameters can be disentangled from the flows and the amplitudes

Thank you for your attention!

Value of the parameters

Meaning	Sign	Value
Mass of the particle	m	140 MeV
Freeze-out time	τ_{0}	$7 \mathrm{fm} / \mathrm{c}$
Freeze-out temperature	T_{0}	170 MeV
Temperature-asymmetry parameter	a^{2}	0.3
Spatial slope parameter	b	-0.1
Transverse size of the source	R	10 fm
Longitudinal size of the source	Z	15 fm
Velocity-space transverse size	H	$10 \mathrm{c} / \mathrm{fm}$
Velocity-space longitudinal size	H_{z}	$16 \mathrm{c} / \mathrm{fm}$
Elliptical spatial asymmetry parameter	ϵ_{2}	0.0
Triangular spatial asymmetry parameter	ϵ_{3}	0.0
Elliptical velocity-field asymmetry parameter	χ_{2}	0.0
Triangular velocity-field asymmetry parameter	χ_{3}	0.0

Usually one anisotropy parameter is varied, and the others are kept zero

About the spectra

Plot the N_{1} with non zero coefficient divide by N_{1} with zero coefficient

