

Electroweak measurements at the LHC Gabriella Pásztor

MTA – ELTE Lendület CMS Particle and Nuclear Physics Group Eötvös University, Budapest

Zimányi Winter School Wigner RCP & ELTE, Budapest 7-11 December 2015

Higgs

boson

g

gluon

Y

photon

7

Z boson

Bosons

W

W boson

Force

carriers

Quarks

Leptons

u

up

d

down

e

electron

electron

C

charm

S

strange

muon

neutrino

Fermions

2013 NOBEL PRIZE IN PHYSICS

François Englert

t

top

b

bottom

τ

tau

tau neutrino

- In the Standard Model, the scalar Higgs field breaks electroweak symmetry dinamically via the Brout-Englert-Higgs mechanism making the theory renormalisable
- The field's longitudinal degrees of freedom provide mass to the W and Z bosons
- The elementary fermions acquire mass via Yukawa interactions
- The **Higgs boson** is the only fundamental scalar particle in the SM (while many extensions of the model predict more scalar bosons...)
- scalar bosons...)
 The Higgs contribution *regularizes weak vector-boson scattering* whose study thus provides a sensitive test of EWSB as well as physics beyond the SM
- Since its discovery in 2012, the LHC ATLAS and CMS collaborations proceeded to measure the Higgs boson properties with increasing precision

Challenges

- Interesting processes are very rare (~3 Higgs in 10¹⁰ p-p interactions)
- Select signal from huge background
- Only 1 in 4·10⁴ events can be recorded

Excellent trigger system critical for success!

→ Both experiments execute upgrades for Run2

Observing the SM Higgs

Gabriella.Pasztor@cern.ch

- Higgs mass not predicted by the SM but production cross-sections and decay branching ratios are precisely predicted for a given mass
- Important input to other property measurements
 - $\Delta m=0.2$ GeV shifts BR(H \rightarrow ZZ) by 2%
- Global fit to data of high resolution channels: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4I$
 - m_H changes peak position and event rate (cross-section, branching ratios)
- Large improvement of precision from final Run1 calibration of EM calorimeter energy and muon momentum scales
- Measurements still statistics limited:

 $m_H = 125.09 \pm 0.24 \text{ GeV}$

$$= 125.09 \pm 0.21 \text{ (stat)} \pm 0.11 \text{ (syst) GeV}$$

arXiv:1503.07589, PRL 114 (2015) 191803

Coupling measurements

- Separate different production and decay modes using their specific event characteristics
- Global fit to the events counts in the various phase-space regions taking into account (simultaneously fitting) background contributions with different assumptions for specific tests

$$\begin{split} n_{\text{signal}}(k) &= \mathcal{L}(k) \times \sum_{i} \sum_{f} \left\{ \sigma_{i} \times A_{i}^{f}(k) \times \varepsilon_{i}^{f}(k) \times \text{BR}^{f} \right\}, \\ &= \mathcal{L}(k) \times \sum_{i} \sum_{f} \mu_{i} \mu^{f} \left\{ \sigma_{i}^{\text{SM}} \times A_{i}^{f}(k) \times \varepsilon_{i}^{f}(k) \times \text{BR}_{\text{SM}}^{f} \right\} \end{split}$$

- More than 3000 nuisance parameters
- All results assume a single SM-like Higgs boson (CP-even scalar) with the tensor structure of the SM interactions and a small width (4 MeV in SM)
 - Inherent model dependence

ATLAS-CONF-2015-044; CMS-PAS-HIG-15-002

Cross-sections and decay branching ratios

- Measured rates only sensitive to σ · BR
- Most general result using σ ratios and BR ratios
- Absolute normalisation to gg→H→ZZ cross-section which has the smallest systematic uncertainty
- Correlation of ratio results due to common denominator (σ_{ggF}, BR_{ZZ})
- Largest deviations for ttH cross-section and H → bb branching ratio

Couplings within the κ framework

- Total width not well constrained at LHC
 - ightarrow in most generic models only coupling strength ratios can be constrained
- Measure coupling modifiers: $g_i \equiv g_i^{SM} \times \kappa_I$
- Minimal model
 - All fermion couplings scale the same way: $\kappa_{\rm F} \equiv \kappa_{\rm t} = \kappa_{\rm b} = \kappa_{\rm c} = \kappa_{\rm g}$
 - All boson couplings scale the same way: $\kappa_V \equiv \kappa_W = \kappa_Z$
 - No non-SM contributions to the total width, $\kappa_{\rm F} \cdot \kappa_{\rm V} > 0$

 $\kappa_i \equiv g_i / g_i^{SM}$

Couplings within the κ framework

No non-SM contributions to the total width Individual coupling modifiers introduced for each SM particle

Couplings within the *k* framework

 $\kappa_i \equiv g_i / g_i^{SM}$

Generic models allowing physics beyond the SM

$$\mathcal{L} = \bar{c}_{\gamma} O_{\gamma} + \bar{c}_{g} O_{g} + \bar{c}_{HW} O_{HW} + \bar{c}_{HB} O_{HB} + \tilde{c}_{\gamma} \tilde{O}_{\gamma} + \tilde{c}_{g} \tilde{O}_{g} + \tilde{c}_{HW} \tilde{O}_{HW} + \tilde{c}_{HB} \tilde{O}_{HB}$$

 O_i and \widetilde{O}_i dim-6 operators describe CP-even and CP-odd interactions with gauge bosons

Constraints on effective Lagrangian coefficients

Coefficient	$95\% \ 1 - CL$ limit
\bar{c}_{γ}	$[-7.4, 5.7] \times 10^{-4} \cup [3.8, 5.1] \times 10^{-3}$
\tilde{c}_{γ}	$[-1.8, 1.8] \times 10^{-3}$
\bar{c}_g	$[-0.7, 1.3] \times 10^{-4} \cup [-5.8, -3.8] \times 10^{-4}$
\tilde{c}_g	$[-2.4, 2.4] \times 10^{-4}$
\bar{c}_{HW}	$[-8.6, 9.2] \times 10^{-2}$
$ ilde{c}_{HW}$	[-0.23, 0.23]

December 2015

Scrutinising the observed Higgs state

- More signal strength measurements and coupling tests with various assumptions
- Limits on new physics from coupling measurements (2HDM, ...)
- Limits on rare production (tH, HH, ...) and decay modes (H $\rightarrow \mu\mu$, ee, Z γ , J/ $\psi\gamma$, ... exotic e.g. invisible particles, lepton-jets, ...)
- Total cross-section
- Spin-parity hypothesis tests
- Constrains on CP-odd fraction and on anomalous tensor couplings
- Constraints on Higgs width
 - Direct measurement limited by experimental resolution
 - Interferometry at high mass
- Constraints on Higgs lifetime

...and looking for new Higgs bosons predicted by extended models

In general, all measurements are in agreement with the SM predictions...

Vector-boson scattering as probe of EWSB and new physics

VV scattering: a probe of EWSB

Vector boson scattering is "intimately" connected to EWSB and new physics

- In SM, unitarity in VV scattering is restored by Higgs exchange: $\sigma \sim O(E^2) O(E^2) \rightarrow O(E^0)$
- If HVV coupling is not exactly the SM value, unitarity is not realized [σ ~ O(E²)] or "delayed" until a new high-mass state enters

Even if no new physics is observed directly (finite energy reach, large backgrounds), VV scattering can reveal its existence

SM gauge bosons:	202	
	Jord	$\sim\sim\sim\sim\sim$
Higgs:		
New scalar (or new gauge boson):	<u>}</u>	

All results at: http://cern.ch/go/pNj7

22

Th. $\Delta \sigma_{\mu}$ in exp. $\Delta \sigma$

Multi-boson production

Multiboson Cross	Section Measur	ements	Status: Nov 20	015	∫£ dt [fb ^{−1}]	Reference
$\sigma^{\rm fid}(\gamma\gamma)[\Delta R_{\gamma\gamma} > 0.4]$	$\sigma = 44.0 + 3.2 - 4.2 \mathrm{pb} \; \mathrm{(data)} \\ 2 \gamma \mathrm{NNLO} \; \mathrm{(theory)}$		ΔΤΙΔ	Preliminary	4.9	JHEP 01, 086 (2013)
$\sigma^{\rm fid}(W\gamma \to \ell \nu \gamma)$	$\sigma = 2.77 \pm 0.03 \pm 0.36 \ \mathrm{pb} \ \mathrm{(data)} \\ \mathrm{NNLO} \ \mathrm{(theory)}$	•		Treinniary	4.6	PRD 87, 112003 (2013)
$-[n_{jet}=0]$	$\sigma = 1.76 \pm 0.03 \pm 0.22 \ \mathrm{pb} \ \mathrm{(data)} \\ \mathrm{NNLO} \ \mathrm{(theory)}$	0	Run 1	$\sqrt{s} = 7, 8 \text{ TeV}$	4.6	PRD 87, 112003 (2013)
$\sigma^{\rm fid}(Z\gamma \to \ell\ell\gamma)$	$\sigma = 1.31 \pm 0.02 \pm 0.12 \ \mathrm{pb} \ \mathrm{(data)} \\ \mathrm{NNLO} \ \mathrm{(theory)}$	0			4.6	PRD 87, 112003 (2013)
$-[n_{jet}=0]$	$\sigma = 1.05 \pm 0.02 \pm 0.11 \ \mathrm{pb} \ \mathrm{(data)} \\ \mathrm{NNLO} \ \mathrm{(theory)}$	0			4.6	PRD 87, 112003 (2013)
$\sigma^{\rm fid}(W\gamma\gamma \to \ell \nu \gamma \gamma)$	$\sigma = 6.1 + 1.1 - 1.0 \pm 1.2 \text{ (b (data))} \\ \text{MCFM NLO (theory)}$			Δ.	20.3	arXiv:1503.03243 [hep-e
$-[n_{jet}=0]$	$\sigma = 2.9 + \underbrace{0.8 - 0.7 + 1.0 - 0.9}_{\text{MCFM NLO (theory)}} \text{ fb (data)}$	2	Δ		20.3	arXiv:1503.03243 [hep-e
$\sigma^{\rm fid}(pp \rightarrow WV \rightarrow \ell \nu qq)$	$\sigma = 1.37 \pm 0.14 \pm 0.37 \ \mathrm{pb} \ \mathrm{(data)} \\ \mathrm{MC@NLO} \ \mathrm{(theory)} \\ \end{array}$	•			4.6	JHEP 01, 049 (2015)
$\sigma^{ ext{fid}}(W^{\pm}W^{\pm}jj)$ EWK	$\label{eq:alpha} \begin{array}{l} \sigma = 1.3 \pm 0.4 \pm 0.2 \text{ fb (data)} \\ \text{PowhegBox (theory)} \end{array}$	4			20.3	PRL 113, 141803 (2014)
$\sigma^{\text{total}}(pp \rightarrow WW)$	$\sigma = 51.9 \pm 2.0 \pm 4.4 \text{ pb (data)} \\ \text{MCFM (theory)} \\ \sigma = 71.4 \pm 1.2 \pm 5.5 - 4.9 \text{ pb (data)} \\ \text{MCFM (theory)} \end{cases}$			_	4.6	PRD 87, 112001 (2013) ATLAS-CONF-2014-033
−σ ^{fid} (WW→ee) [n _{jet} =0]	$\sigma = 56.4 \pm 6.8 \pm 10.0$ fb (data) MCFM (theory)	•		Theory	4.6	PRD 87, 112001 (2013)
$-\sigma^{\text{fid}}(WW \rightarrow \mu\mu) [n_{\text{jet}}=0]$	$\sigma = 73.9 \pm 5.9 \pm 7.5 \text{ fb (data)} \\ \begin{array}{c} \text{MCFM (theory)} \end{array}$	•		LHC pp \sqrt{s} = 7 TeV	4.6	PRD 87, 112001 (2013)
$-\sigma^{fid}(WW \rightarrow e\mu) [n_{jet}=0]$	$\sigma = 262.3 \pm 12.3 \pm 23.1 \text{ fb} \text{ (data)} \\ \text{MCFM (theory)}$			Data stat	4.6	PRD 87, 112001 (2013)
− σ ^{fid} (WW→eμ) [n _{iet} ≥0]	$\sigma = 563.0 \pm 28.0 \pm 79.0 - 85.0 \text{ fb} \text{ (data)} \\ \text{MCFM (theory)}$			stat+syst	4.6	arXiv:1407.0573 [hep-ex
$\sigma^{\text{total}}(\text{nn}\rightarrow WZ)$	σ = 19.0 + 1.4 − 1.3 ± 1.0 pb (data) MCFM (theory)			LHC pp $\sqrt{s} = 8$ TeV	4.6	EPJC 72, 2173 (2012)
(pp, n = 2)	$\sigma = 20.3 \pm 0.8 - 0.7 \pm 1.4 - 1.5 \text{ pc (data)}$ MCFM (theory) $\sigma = 99.2 \pm 3.8 - 3.0 \pm 6.0 - 6.2 \text{ fb (data)}$			Data stat	13.0	ATLAS-CONF-2013-021
$\sigma^{\text{total}}(\text{pp}\rightarrow\text{ZZ})$ $-\sigma^{\text{total}}(\text{pp}\rightarrow\text{ZZ}\rightarrow4\ell)$ $-\sigma^{\text{fid}}(\text{ZZ}\rightarrow4\ell)$ $-\sigma^{\text{fid}}(\text{ZZ}^*\rightarrow4\ell)$ $-\sigma^{\text{fid}}(\text{ZZ}^*\rightarrow\ell\ell\nu\nu)$	$\begin{array}{c} \sigma = 6.7 \pm 0.7 + 0.5 - 0.4 \ {\rm pb}\ {\rm (data)} \\ \sigma = 7.1 + 0.5 - 0.4 \ {\rm pb}\ {\rm (data)} \\ \sigma = 7.1 + 0.5 - 0.4 \ {\rm pb}\ {\rm (data)} \\ \sigma = 7.6 + 0.8 \ {\rm (data)} \\ \rho = 0.0 \pm 5.0 \ {\rm (b}\ {\rm (data)} \\ \rho = 107.0 \pm 9.0 \pm 5.0 \ {\rm b}\ {\rm (data)} \\ \sigma = 25.4 \pm 3.3 \ {\rm (b}\ {\rm c}\ {\rm (data)} \\ \rho = 2.5 \pm 3.3 \ {\rm (b}\ {\rm c}\ {\rm (data)} \\ \sigma = 2.5 \pm 3.3 \ {\rm (b}\ {\rm c}\ {\rm (data)} \\ \sigma = 2.5 \pm 3.3 \ {\rm (b}\ {\rm c}\ {\rm (data)} \\ \sigma = 2.5 \pm 3.3 \ {\rm (b}\ {\rm c}\ {\rm (data)} \\ \sigma = 2.5 \pm 3.3 \ {\rm (b}\ {\rm c}\ {\rm (data)} \\ \sigma = 2.5 \pm 3.3 \ {\rm (b}\ {\rm c}\ {\rm (data)} \\ \sigma = 2.5 \pm 3.3 \ {\rm (b}\ {\rm c}\ {\rm (data)} \\ \sigma = 2.5 \pm 3.3 \ {\rm (b}\ {\rm c}\ {\rm (data)} \\ \sigma = 2.5 \pm 3.8 \ {\rm (b}\ {\rm c}\ {\rm (data)} \\ \sigma = 2.5 \pm 3.8 \ {\rm (b}\ {\rm c}\ {\rm (data)} \\ \sigma = 2.5 \pm 3.8 \ {\rm (b}\ {\rm c}\ {\rm (data)} \\ \rho {\rm (b}\ {\rm (data)} \\ \rho {\rm (data)} \\ \rho {\rm (b}\ {\rm (data)} \ {\rm (b}\ {\rm (data)} \\ \rho {\rm (b}\ {\rm (data)} \ {\rm (b}\ {\rm (data)} \\ \rho {\rm (b}\ {\rm (data)} \ {\rm (data)} \ {\rm (b}\ {\rm (data)} \ {\rm (data)} \ {\rm (b}\ {\rm (data)} \ {\rm (b}\ {\rm (data)} \ {\rm (data)} \ {\rm (b}\ {\rm (data)} \ {\rm (da$		4 16 18	20 22 24 26	4.6 20.3 4.5 20.3 4.6 20.3 4.6 4.6	JHEP 03, 128 (2013) ATLAS-CONF-2013-020 arXiv:1403.5657 [hep-ex arXiv:1403.5657 [hep-ex JHEP 03, 128 (2013) ATLAS-CONF-2013-020 JHEP 03, 128 (2013) JHEP 03, 128 (2013)
	0.2 0.4 0.0 0.0	1.0 1.2 1.	- I.U I.U			
				data/theory		

JHEP 04 (2015) 164, arXiv:1502.05664

 $Z\gamma$ production

mm

$W\gamma\gamma$ production

V

Phys. Rev. Lett. 113, 141803

	$\sigma^{ m fid}$ [fb]	$\sigma^{ m MCFM}$ [fb]
Inclusive $(N_{\text{jet}} \ge 0)$		NLO SM
$\mu \nu \gamma \gamma \\ e \nu \gamma \gamma \\ \mu \gamma \gamma$	7.1 $^{+1.3}_{-1.2}$ (stat.) ± 1.5 (syst.) ± 0.2 (lumi.) 4.3 $^{+1.8}_{-1.6}$ (stat.) $^{+1.9}_{-1.8}$ (syst.) ± 0.2 (lumi.) 6.1 $^{+1.1}_{-1.6}$ (stat.) $^{+1.2}_{-1.8}$ (syst.) ± 0.2 (lumi.)	2.90 ± 0.16
Exclusive $(N_{jet} = 0)$	$0.1 -1.0$ (stat.) ± 1.2 (syst.) ± 0.2 (10111.)	
$\mu u\gamma\gamma \ e u\gamma\gamma \ \ell u\gamma\gamma$	$\begin{array}{c} 3.5 \pm 0.9 \text{ (stat.)} \begin{array}{c} ^{+1.1}_{-1.0} \text{ (syst.)} \pm 0.1 \text{ (lumi.)} \\ 1.9 \begin{array}{c} ^{+1.4}_{-1.1} \text{ (stat.)} \begin{array}{c} ^{+1.1}_{-1.2} \text{ (syst.)} \pm 0.1 \text{ (lumi.)} \\ 2.9 \begin{array}{c} ^{+0.8}_{-0.7} \text{ (stat.)} \begin{array}{c} ^{+1.0}_{-0.9} \text{ (syst.)} \pm 0.1 \text{ (lumi.)} \end{array} \end{array}$	1.88 ± 0.20

1.9σ excess in inclusive measurement

December 2015

Anomalous quartic couplings

- High di-photon mass region in WV γ and W $\gamma\gamma$ sensitive to new physics
- Introduce dim-8 operators (ATLAS) as in PRD 74 (2006) 073005
 - Related to dim-6 operators (LEP, CMS) as given in arXiv:1309.7890
- Stringent constraints from CMS exclusive $\gamma\gamma \rightarrow$ WW measurement

Search for heavy bosons in VV final states

30

December 2015

Gabriella.Pasztor@cern.ch

Conclusion

- LHC entered Higgs boson precision era
- 3 years after the discovery
 - Measurements still statistics dominated
 - Mass known by 0.2% precision
 - Some couplings measured with 10% uncertainty
 - Largest discrepancies for ttH production and
 H→bb decay (also least precise measurements)
 - Differential distributions measured
 - Spin-parity structure tested
- No sign yet for physics beyond the SM
- Run2 started with increased energy of √s=13 TeV and higher luminosity expected
 - Improved precision for EW measurements
 - Enlarged phase-space for new physics searched
- The adventure continues to discover what lies behind the now completed SM

Higgs @ LHC

Gabriella. Pasztor@cern.cl

• The newly discovered Higgs boson behaves just as the SM predicts within current theoretical and experimental precision

- Still enormous potential to further our knowledge by studying the Higgs sector
 - *Precision measurements of Higgs properties*: are they consistent with the SM beyond the present precision?
 - Measurements of the *Higgs signal in rare or challenging channels*
 - Search for (discovery of?) new Higgs states: many extensions predict more than one Higgs bosons, one of them frequently SM-like

Standard Modell @ LHC

 σ [pb] observed/theory

Before embarking on new discoveries... needed to establish the Standard Model at LHC energies Excellent agreement for a wide range of processes over 14 orders in cross-section

 $-2 \ln \Lambda(m_{_H})$

6

5

4

3

2

0

124

 $m_H = 125.09 \pm 0.24 \text{ GeV}$

ATLAS and CMS

LHC Run 1

ATLAS H > YY

ATLAS H->ZZ->41

CMS $H \rightarrow ZZ \rightarrow 4l$

ATLAS+CMS YY

ATLAS+CMS 41

ATLAS+CMS YY+41

123

ATLAS and CMS

124.5

125

125.5

126

m_H [GeV]

LHC Run 1

CMS $H \rightarrow \gamma \gamma$

 $= 125.09 \pm 0.21 \text{ (stat)} \pm 0.11 \text{ (syst) GeV}$

Higgs mass

Gabriella. Pasztor@cern.ch

Syst. Total Stat. Stat. Syst. Total 126.02 ± 0.51 (± 0.43 ± 0.27) GeV 124.70 ± 0.34 (± 0.31 ± 0.15) GeV 124.51 ± 0.52 ($\pm 0.52 \pm 0.04$) GeV 125.59 ± 0.45 ($\pm 0.42 \pm 0.17$) GeV $125.07 \pm 0.29 (\pm 0.25 \pm 0.14) \text{ GeV}$ 125.15 ± 0.40 (± 0.37 ± 0.15) GeV 125.09 \pm 0.24 (\pm 0.21 \pm 0.11) GeV 124 125 126 127 128 129 m_{H} [GeV] 3 Harry ATLAS and CMS $H \rightarrow ZZ \rightarrow 4l$ Combined $\gamma\gamma+4l$ LHC Run 1 2.5 ----- Stat. only uncert.

Three signal strengths parameters profiled:

arXiv:1503.07589, PRL 114 (2015) 191803

Compatibility of four mass measurements with the combined value: 10%

December 2015

arXiv:1503.07589, PRL 114 (2015) 191803

Higgs mass uncertainties

Experimental / theoretical / luminosity uncertainties treated as uncorrelated / fully correlated / partially correlated between the experiments

ATLAS-CONF-2015-044; CMS-PAS-HIG-15-002

SM decay branching ratios assumed

Signal strengths

Normalized cross-section * decay branching ratio wrt SM

SM production cross-sections assumed

38

December 2015

Signal strengths

Grouping production processes via HVV (VBF+VH) and Hff (ggF+ttH) couplings together, assuming common μ for given decay mode

 $\sigma \cdot BR$

 $\cdot BR$

SM

 $\mu =$

HL-LHC: O(1%) precision for most couplings

Accessing rare processes: ttH

Important to understand SM backgrounds, such as ttZ, tt γ , ... Run2: improved s/b due to E_{cm} increase + higher statistics!

41

8.2σ at HL-LHC

 $\Delta \mu / \mu \sim 0.2$

 $HH \rightarrow bb\gamma\gamma$ to be combined with other channel e.g. $HH \rightarrow bb \tau\tau$, bb bb, bb WW ...

Gabriella.Pasztor@cern.ch

$X \rightarrow HH$ search

Fiducial cross-sections

December 2015

46

Fiducial region definition motivated by experimental cuts, inclusive in production modes

- Model-independent measurement of production and decay kinematics
- Allows comparison with precision calculations, alternative models
- Test theoretical modelling of different Higgs boson production mechanisms
- Sensitive to BSM physics

CMS-PAS-HIG-14-028

Fiducial cross-section

Fiducial cross-sections vs. N_{jets}

Compatibility with SM

Reasonable agreement within large (statisticallydominated) uncertainties

χ^2 probability						
Variable	Powheg	Minlo HJ	Minlo HJJ	HRES		
$p_{\mathrm{T}}^{\gamma\gamma}$	0.12	0.10	0.09	0.12		
$ y_{\gamma\gamma} $	0.81	0.83	0.83	0.80		
$ \cos \theta^* $	0.59	0.57	0.58	0.56		
$N_{ m jets}$	0.42	0.36	0.30	- 1		
$N_{ m jets}^{ m 50~GeV}$	0.33	0.33	0.30	_		
$H_{ m T}$	0.43	0.39	0.34	$\frac{2}{2}$		
$p_{\mathrm{T}}^{j_1}$	0.84	0.82	0.79	-		
$ y_{j_1} $	0.64	0.58	0.51			
$p_{\mathrm{T}}^{j_2}$	0.34	0.29	0.23	.		
$ \Delta \hat{\phi}_{jj} $	0.21	0.28	0.24	- 1		
$ \Delta y_{jj} $	0.64	0.58	0.49	-		
$ \Delta \phi_{\gamma\gamma,jj} $	0.45	0.46	0.42			

JHEP09(2014)112, arXiv:1407.4222

Total cross-section

- From measured fiducial cross-section, extrapolate to the full phase-space
- Aimed at measuring the dominant ggF cross-section, other modes corrected for assuming SM values

Phys. Rev. Lett. 115 (2015) 091801, arXiv:1504.05833

Spin-parity tests

- In SM, Higgs is CP-even scalar: J^{CP} = 0⁺⁺
- In BSM, often extended Higgs sector with possibility of CP-mixing
- Interactions could violate C and CP,
- thus testing only J^P
- Measurement in bosonic channels: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4I$, $H \rightarrow WW \rightarrow ev\mu v$ rely mainly on angular distributions
- Observation of $H \rightarrow \gamma \gamma$ excludes spin-1 hypothesis via Landau Young theorem

g(**q**)

 θ_{n}

 $\mathbf{\Phi}$

- Large number of fixed spin-parity hypothesis tests assuming the resonance decay involves only one CP eigenstate
 - J^P = 0⁺, 0⁻, 0⁺_h (BSM scalar, higher-order operators), 1⁺, 1⁻, 2⁺ (e.g. graviton-like with universal and non-universal couplings to fermions and vector bosons), 2⁻
- Detailed study of the spin-0 hypothesis
 - Parametrisations with anomalous vertices (CMS) or Effective Field Theory approach (ATLAS) to test HVV couplings

 θ_1

'g(q

 Φ_1

10*1

$H \rightarrow \gamma \gamma$ observables

Production angle of the two photons in the Collins-Soper frame:

NAN POOR

Gabriella. Pasztor@cern.cl

December 2015

Spin-parity tests

 $2 \times \ln(L_{J^{P}}/L_{0^{+}})$

100

80

60

40

20

0

-20

-40

-60

arXiv:1506.05669

PRD 92 (2015) 012004, arXiv:1411.3441

- All tests prefer SM hypothesis
- All spin-1 and spin-2 hypotheses as well as 0^{-} and 0^{+}_{h} excluded with >99%CL (most with >99.9% CL)
- Graviton inspired 2⁺_m state disfavoured independent of production mode (gg or qq)

arXiv:1506.05669

December 2015

Anomalous couplings (ATLAS)

- Test presence of BSM CP-even and CP-odd terms in spin-0 H→VV decay using effective Lagrangian: CP-odd fraction and tensor couplings constrained
- EFT approach, valid up to a scale A (= 1 TeV):

$$\mathcal{L}_{0}^{V} = \left\{ c_{\alpha} \kappa_{SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \right. \\ \left. - \frac{1}{4} \frac{1}{\Lambda} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] \right. \\ \left. - \frac{1}{2} \frac{1}{\Lambda} \left[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu} \right] \right\} X_{0}$$

SM coupling strength: $g_{HVV} \propto m_{Z/W}^2$

α: CP-mixing angle, for α ≠ 0, π: CP-violation(s_α = sinα, c_α = cosα)

Assume only one BSM contribution at a time

J^P	Model	Choice of tensor couplings			
		KSM	KHVV	KAVV	α
0^+	Standard Model Higgs boson	1	0	0	0
0_{h}^{+}	BSM spin-0 CP-even	0	1	0	0
0^{-}	BSM spin-0 CP-odd	0	0	1	$\pi/2$

Anomalous couplings (CMS)

Parametrisation with anomalous vertices:

 $A(\text{HVV}) \sim \left| a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_{\text{V1}}^2 + \kappa_2^{\text{VV}} q_{\text{V2}}^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right| m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}.$

 $f_{a3} = \frac{|a_3|^2 \sigma_3}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + \tilde{\sigma}_{\Lambda 1} / (\Lambda_1)^4 + \dots}, \qquad \phi_{a3} = \arg\left(\frac{a_3}{a_1}\right)^{\frac{14}{5}}$

- Pure pseudo-scalar Higgs (f_{a3}=1) excluded at 99.98% CL
- Pseudo-scalar fraction constrained:

December 2015

58

14

12

10

68% CI

0.8

95% CL

---- 68% CL Best fit

SM

0.8

19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV

0.4

CMS

2

0.8

0.6

0.4

0.2

0.2

0.4

0.6

0.6

Beyond the SM Higgs

Standard Model 1 complex scalar doublet 1 physical Higgs boson: H

New Higgs states?

2HDM 2 complex scalar doublets 5 physical Higgs bosons: h, H, A, H⁺, H⁻

MSSM (Type-II 2HDM) 2 complex scalar doublets 5 physical Higgs bosons: h, H, A, H⁺, H⁻

NMSSM (μ-problem of MSSM) 2 complex scalar doublets + 1 singlet 7 physical Higgs bosons: h₁, h₂, h₃, a₁, a₂, h⁺, h⁻

> Additional SM-like Higgs (→ high-mass searches)

Fermiophobic Higgs

New decay modes?

Invisible Higgs e.g. decaying to neutral LSP

"Exotic" Higgs e.g. decaying to lepton-jets in hiddenvalley SUSY

New production modes?

Higgs from BSM particle decays e.g. Higgs from SUSY particle cascades

MSSM Higgs sector

- 2 complex scalar doublets \rightarrow 5 physical Higgs bosons
- Tree-level parameters: m_A, tanβ
- Many more parameters after radiative corrections

 Benchmark scenarios

- SS-
- In the decoupling limit, h becomes SM-like at large m_A (>>m_z) and the heavy partners massdegenerate
 - \rightarrow Direct search for additional Higgs states important!
- Coupling to down-type fermions enhanced wrt SM especially at high tanβ
- Associated bbo production plays an important role

- Strongly enhanced cross-section at high tanβ
- Decays $\phi \rightarrow bb$, $\tau \tau$ are important also at high mass
- $\phi \rightarrow$ bb very challenging (huge background)
- $\phi \rightarrow \mu \mu$ very low BR but excellent resolution (could separate H /A when degenerate)

SM measurements can be reinterpreted in MSSM or other SM extensions → ATLAS-CONF-2014-010 → ATL-PHYS-PUB-2014-017

Need to ensure models are compatible with observed Higgs Gabriella. Pasztor@cern.cl

Direct and indirect limits on hMSSM

Searches for non-standard Higgs

Multi-boson production

WW+WZ production

- 2 jets+ e/μ final state: 3.4σ significance
- Observed cross-section: $68 \pm 7 \text{ (stat.)} \pm 19 \text{ (syst.) pb}$ with $61.1 \pm 2.2 \text{ pb}$ expected (MC@NLO)
- Dijet transverse momentum sensitive to new physics

• Setting limits on aTGCs and on coefficients of dim-6 operators in an EFT $\begin{array}{ll} \Delta g_1^Z = g_1^Z - 1, \ \Delta \kappa_{\gamma,Z} = \kappa_{\gamma,Z} - 1, \\ \Delta g_1^Z = \Delta \kappa_Z + \tan^2 \theta_W \Delta \kappa_{\gamma}, \ \lambda_{\gamma} = \lambda_Z \end{array}$

Search for heavy bosons in VV final states

- Narrow resonance search
- Interpreted in different models
 - Extended gauge model with heavy W'
 - Randall-Sundrum model with heavy spin-2 graviton
- Fully hadronic analysis relies on jet substructure techniques

68

December 2015

- ~3.5σ excess in W'→WZ→JJ final state not confirmed by other channels
- 2.5σ excess remains after combination
- <2 σ for G* \rightarrow WW / ZZ

3-5 fb⁻¹ @ 13 TeV surpasses Run1 sensitivity

4 fb⁻¹ data of 2015 run on disk and being analysed

69

December 201

Run2 prospects

13 TeV / 8 TeV inclusive pp cross-section ratio

