Rotating generalization of the Buda-Lund hydrodynamical model

Viktor Könye

Eötvös Loránd University

8 December 2015

Introduction	Observables	Summary
•		

Motivation

- Heavy Ion Physics
- Hydrodynamics
 Rotation
- Buda-Lund model [1]

^[1] T. Csörgő and B. Lörstad, Bose-Einstein correlations for three-dimensionally expanding, cylindrically symmetric, finite systems, Phys.Rev. C54, 1390 (1996)

Buda-Lund model	Observables	Summary
0000		

Definitions of the model

- ▶ Relativistic extension of a non-relativistic exact solution [2]
- Observables calculated from source function parametrized with quantities taken at the freeze-out
- Source function:

$$S(x,p)\mathrm{d}^4 x = rac{g_s}{(2\pi)^3}rac{p^\mu\mathrm{d}^4\Sigma_\mu(x)}{B(x,p)+s_q}$$

Maxwell-Jüttner distribution:

$$B(x,p) = \exp\left[\frac{p^{\nu}u_{\nu}(x)}{T(x)} - \frac{\mu(x)}{T(x)}\right]$$

► Cooper-Frye prefactor: $p^{\mu} \mathrm{d}^4 \Sigma_{\mu}(x) = p^{\mu} u_{\mu} H(\tau) \mathrm{d}^4 x$

^[2] M. Csanád, T. Csörgő, and B. Lörstad, Buda-Lund hydro model for ellipsoidally symmetric fireballs and the elliptic flow at RHIC, Nucl.Phys. A742, 80 (2004)

Buda-Lund model	Observables	Summary
0000		

The rotating velocity field

New parameter ω describing rotation. $\omega = 0$ is the original model.

▶ The four-velocity based on the non-relativistic solution [3]

$$\mathbf{v}_{\text{rot}} = \begin{pmatrix} \mathbf{r}_{x} \frac{\dot{X}}{X} + \mathbf{r}_{z} \frac{\omega}{Z} \frac{X + Z}{2} \\ \dot{Y} \\ \mathbf{r}_{y} \frac{\dot{Y}}{Y} \\ \mathbf{r}_{z} \frac{\dot{Z}}{Z} - \mathbf{r}_{x} \frac{\omega}{X} \frac{X + Z}{2} \end{pmatrix} \rightarrow u^{\mu} = \begin{pmatrix} \mathbf{G} \\ \mathbf{r}_{x} \frac{\dot{X}}{X} + \mathbf{r}_{z} \frac{\omega}{Z} \frac{X + Z}{2} \\ \dot{Y} \\ \mathbf{r}_{y} \frac{\dot{Y}}{Y} \\ \mathbf{r}_{z} \frac{\dot{Z}}{Z} - \mathbf{r}_{x} \frac{\omega}{X} \frac{X + Z}{2} \end{pmatrix}$$

•
$$u_{\mu}u^{\mu} = 1 \Rightarrow G$$

• Normalization convention to provide v < 1

^[3] M. I. Nagy and T. Csörgő, An analytic hydrodynamical model of rotating 3D expansion in heavy-ion collisions, arXiv:1512.00888 [nucl-th].

Buda-Lund model	Observables	Summary
0000		

Temperature and chemical potential

Scaling variable for ellipsodial symmetry

$$s = rac{r_x^2}{2X^2} + rac{r_y^2}{2Y^2} + rac{r_z^2}{2Z^2} \; ,$$

Chemical potential

$$\frac{\mu(x)}{T(x)}=\frac{\mu_0}{T_0}-b^2s ,$$

Temperature

$$\frac{1}{T(x)} = \frac{1}{T_0} \left(1 + a^2 s \right) \left(1 + d^2 \frac{(\tau - \tau_0)^2}{2\Delta \tau^2} \right)$$

► 15 free parameters: τ_0 , $\Delta \tau$, X, Y, Z, \dot{X} , \dot{Y} , \dot{Z} , ω , ϑ , μ_0 , T_0 , b^2 , a^2 and d^2

Buda-Lund model	Observables	Summary
0000		

Saddle-point integration

Sharp distribution

$$S_0(x,p) := rac{H(au)}{B(x,p) + s_q}$$

Approximation with Gaussian

$$S(x,p) \approx \frac{g_s}{(2\pi)^3} \rho_{\mu} u^{\mu}(x_s) S_0(x_s,p) \exp\left\{-\frac{1}{2} R_{\mu\nu}^{-2} (x-x_s)^{\mu} (x-x_s)^{\nu}\right\}$$

The covariance matrix

$$R_{\mu\nu}^{-2} = \partial_{\mu}\partial_{\nu}\left[-\ln(S_0(x_s, p))\right]$$

	Observables	

Definitions of observables

Invariant momentum distribution

$$N_1(\mathbf{p}) = \int S(x,p) \mathrm{d}^4 x$$

Elliptic flow

$$v_{2} = \frac{\int_{0}^{2\pi} N_{1}(p_{z}, p_{t}, \varphi) \cos(2\varphi) \mathrm{d}\varphi}{\int_{0}^{2\pi} N_{1}(p_{z}, p_{t}, \varphi) \mathrm{d}\varphi}$$

Bose-Einstein correlation and HBT radii

$$C(\mathbf{q}_{osl},p) = 1 + \lambda_* \exp\left(-\sum_{i,j} R_{ij}^2(p) q_i q_j\right)$$
 $i,j = o, s, l$

	Observables ○●○○○○	

Elliptic flow

The elliptic flow as a function of transverse momentum, at $p_z = 0$ for different ϑ and ω parameters

2015 Zimányi Winter School

	Observables 000000	

Elliptic flow

The elliptic flow as a function of pseudorapidity, at $p_t = 300 \,\text{MeV}$ for different ϑ and ω parameters

2015 Zimányi Winter School

	Observables 000●00	

Elliptic flow

The elliptic flow as a function of ϑ and ω , at $p_t = 300 \text{ MeV}, p_z = 0$

	Observables 0000●0	

The HBT radii $(R_{ij}^2 \text{ [fm}^2))$ without rotation, at $p_z = 0$ as a function of transverse mass $(m_t \text{ [MeV]})$ and the azimuth angle of the momentum $(\varphi \text{ [rad]})$. The angle of the rotated ellipsoid $\vartheta = 0$.

	Observables 0000●0	

The HBT radii (R_{ij}^2 [fm²]) without rotation, at $p_z = 0$ as a function of transverse mass (m_t [MeV]) and the azimuth angle of the momentum (φ [rad]). The angle of the rotated ellipsoid $\vartheta = 0.05$.

	Observables 0000●0	

The HBT radii (R_{ij}^2 [fm²]) with rotation ($\omega = 0.01$), at $p_z = 0$ as a function of transverse mass (m_t [MeV]) and the azimuth angle of the momentum (φ [rad]). The angle of the rotated ellipsoid $\vartheta = 0$.

	Observables 0000●0	

The HBT radii (R_{ij}^2 [fm²]) with rotation ($\omega = 0.01$), at $p_z = 0$ as a function of transverse mass (m_t [MeV]) and the azimuth angle of the momentum (φ [rad]). The angle of the rotated ellipsoid $\vartheta = 0.05$.

	Observables 00000●	

	Observables 000000	Summary ●

Summary:

- Extension of non-relativistic rotating solution to a relativistic parametrization via the Buda-Lund model
- Generalization of the model taking into account rotation
- Calculation of observables using saddle-point approximation

Outlook:

- Comparison with experimental data
- Other flow components $(v_1, v_3 \dots)$
- Analytic approximations

Buda-Lund model	Observables	Summary
		•

Thank you for your attention!