The fluidity measure η/s from effective field theory

Miklós Horváth Antal Jakovác

Zimányi Winter School on Heavy Ion Physics, 10. 12. 2015

What does make matter more fluent?

What does make matter more fluent?

INTERACTION.

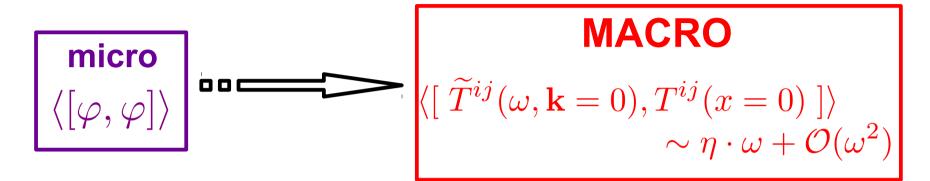
What does make matter more fluent? YOU DON'T SAY? INTERACTION.

What does make matter more fluent? YOU DON'T SAY? INTERACTION.

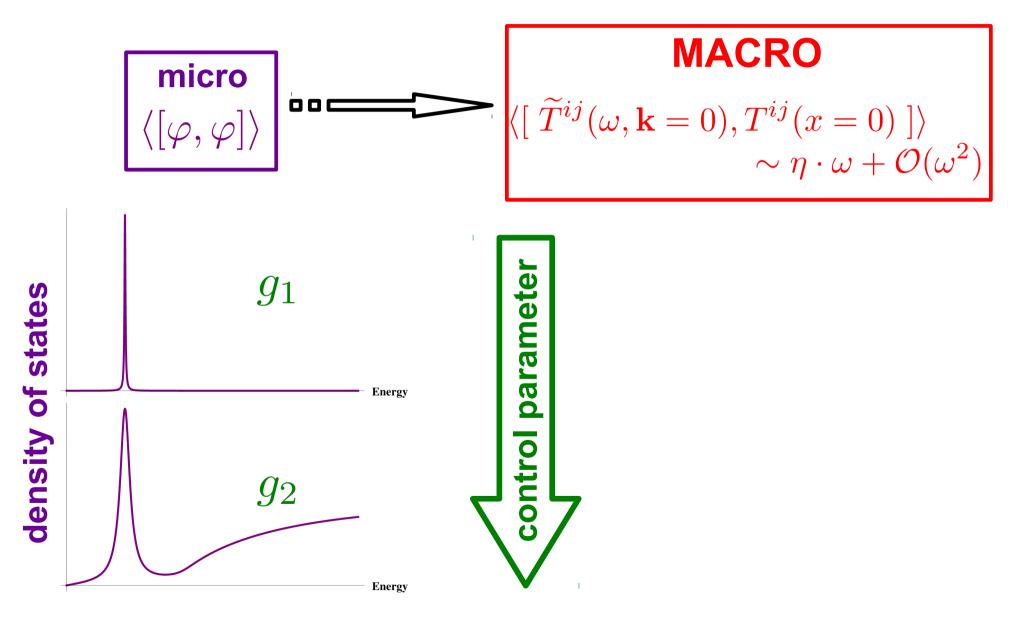
matter: scalar channel of an integrable effective QFT

fluidity: η/s (shear viscosity to entropy density)

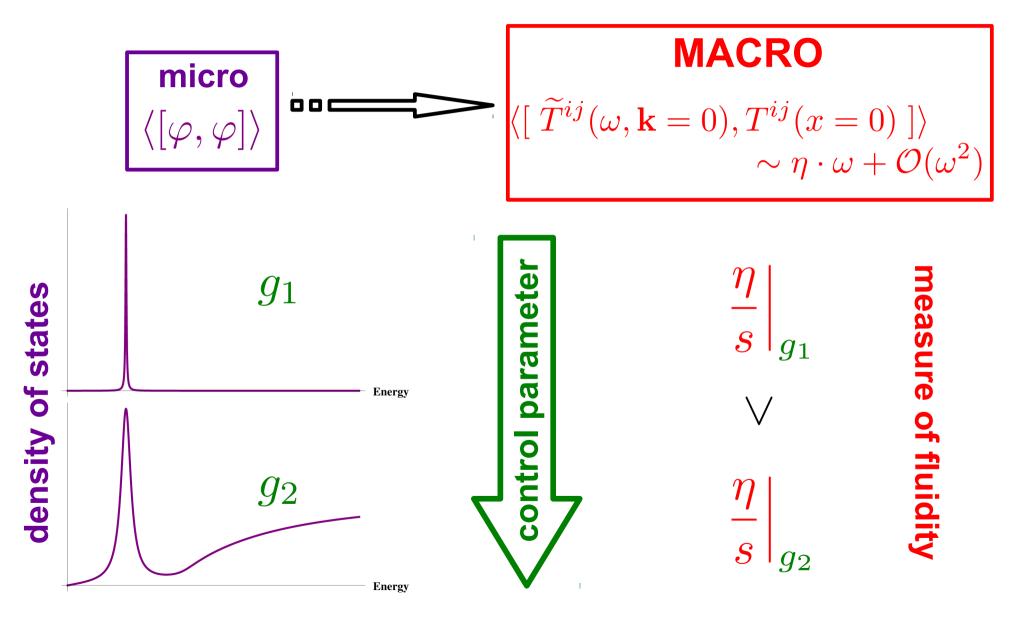
The actual statement



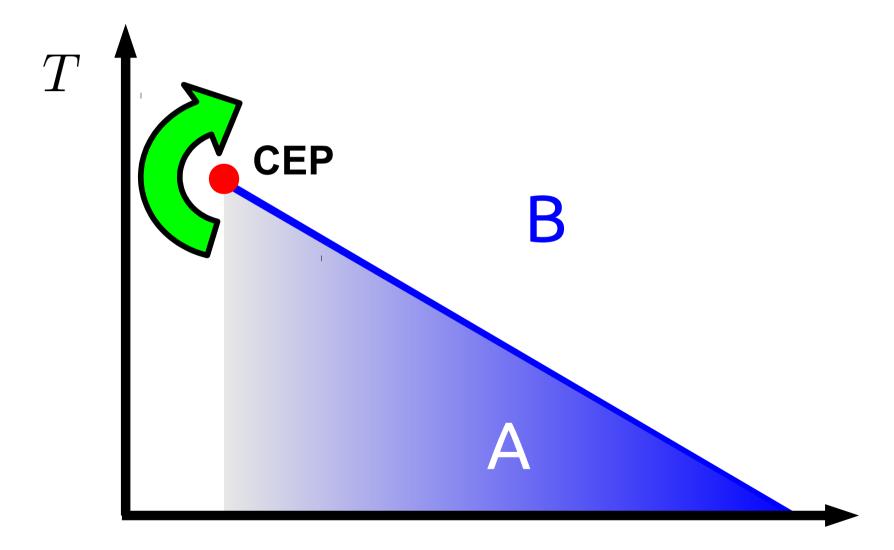
The actual statement



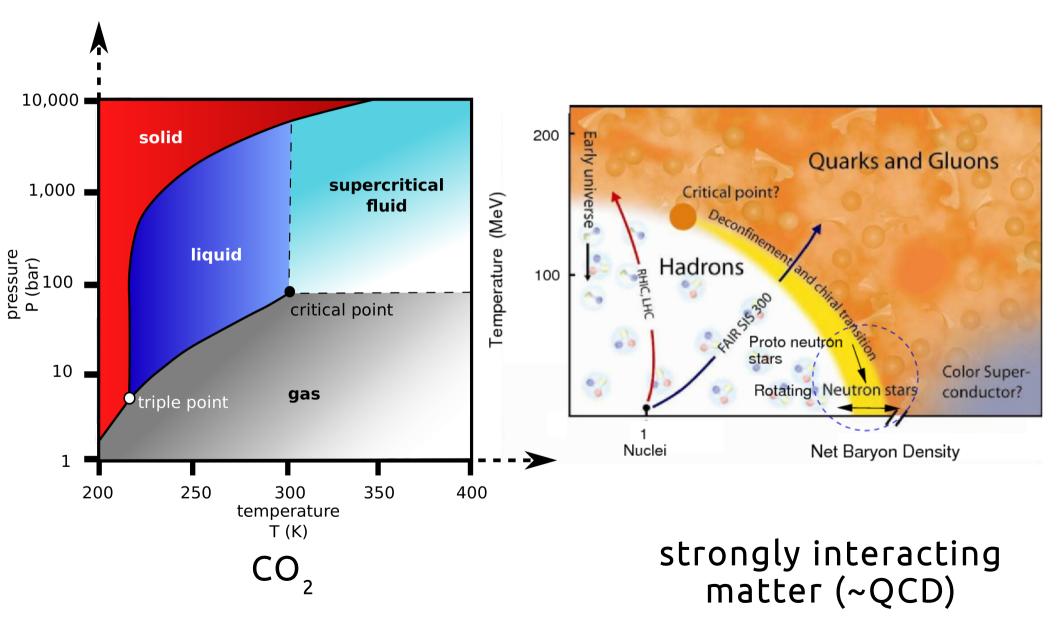
The actual statement



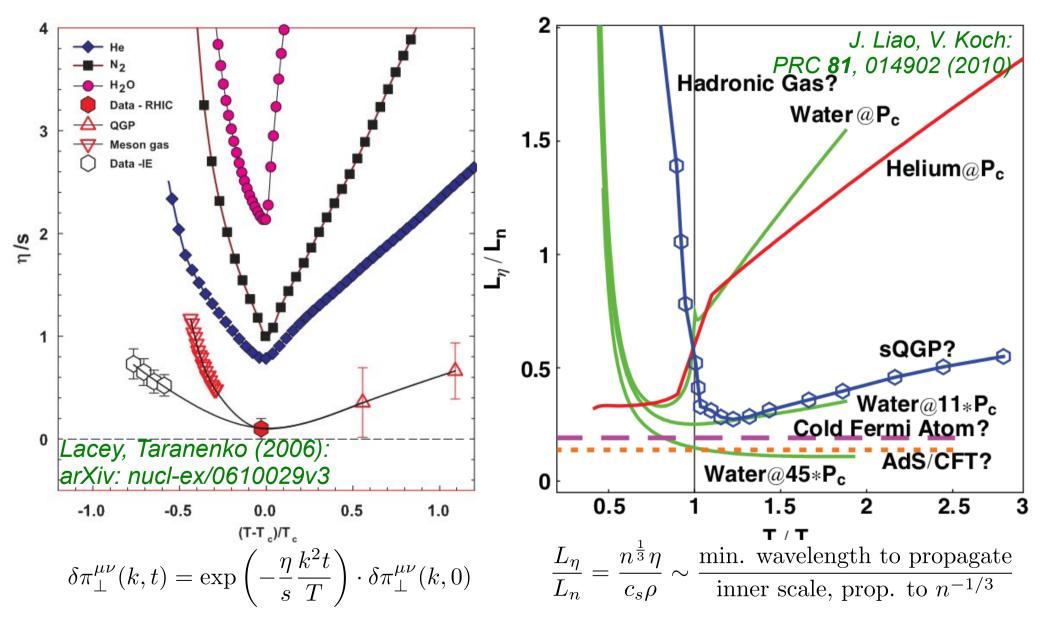
Near-critical behaviour



Near-critical behaviour



Measure of fluidity



Measure of fluidity

gas of quasi-particles (kinetic theory)

~momentum-diffusion coefficient

quasipart. approximation

 $\rho \frac{\delta v}{\tau} \sim \eta \frac{\delta v}{l^2} \quad \fbox{} \quad \gamma \sim \frac{\eta}{\rho} \sim \frac{\eta}{s} \sim \langle v \rangle \, l$

damping of transverse hydrodynamic modes

$$\delta \pi_{\perp}^{\mu\nu}(k,t) = \exp\left(-\frac{\eta}{s}\frac{k^2t}{T}\right) \cdot \delta \pi_{\perp}^{\mu\nu}(k,0)$$

cross section of scattering processes: $\sigma nl \sim 1$

 $\sigma \to 0$

 $l
ightarrow \infty$ ideal gas weakly interacting, *large* η

 $\sigma
ightarrow \infty$

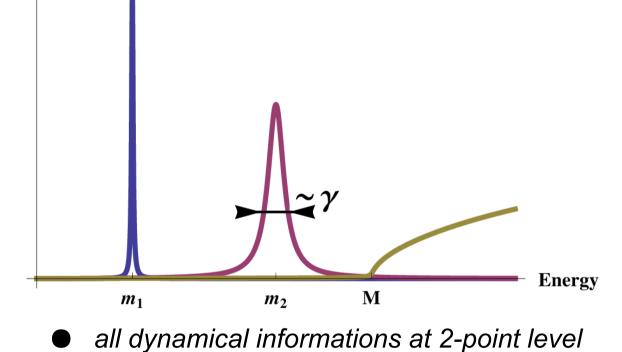
 $l \rightarrow 0$ ideal liquid

strongly interacting, *small* η

in linear response: $\eta = \frac{\langle [T_{xy}(\omega, \mathbf{p} = 0), T_{xy}(0)] \rangle}{\omega} \Big|_{\omega \to 0}$

Extended quasi-particles

Parametrization: spectral function(s) = energy levels at fixed quantum numbers

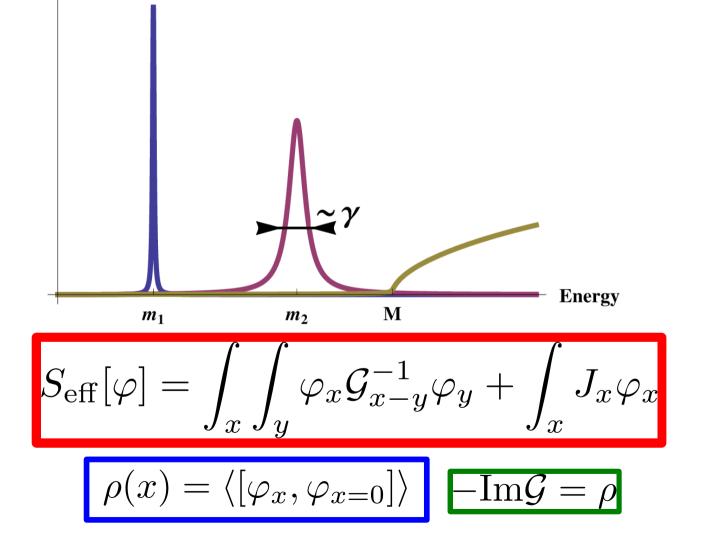


response to local perturbations

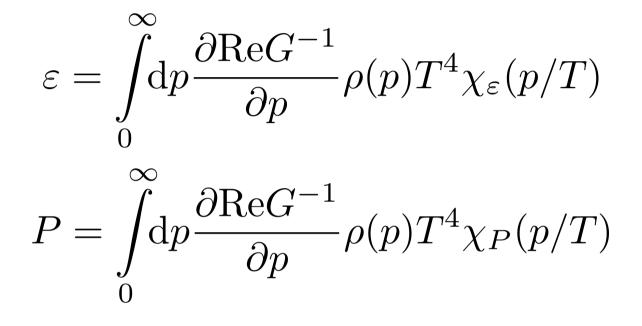
$$\rho(x) = \langle [\varphi_x, \varphi_{x=0}] \rangle$$

Extended quasi-particles

Parametrization: spectral function(s) = energy levels at fixed quantum numbers

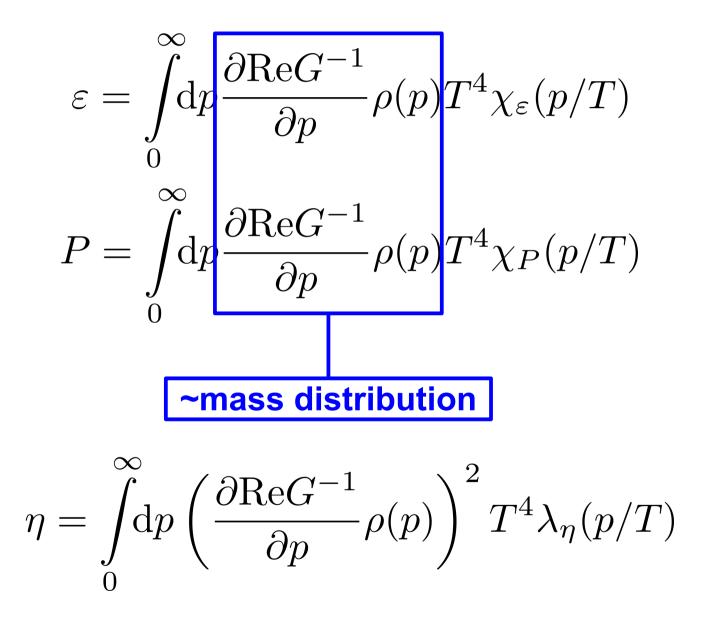


EQP – thermo. & transport arXiv:1512.03001

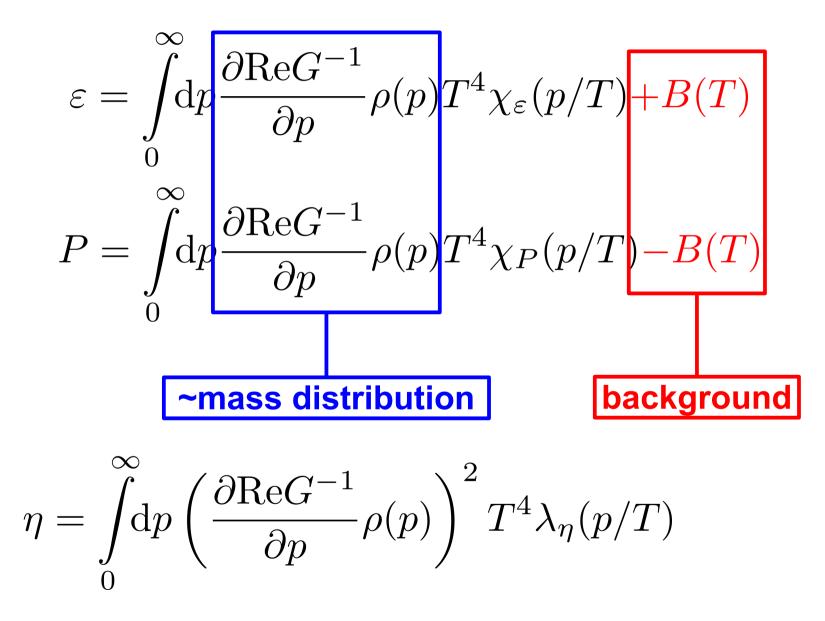


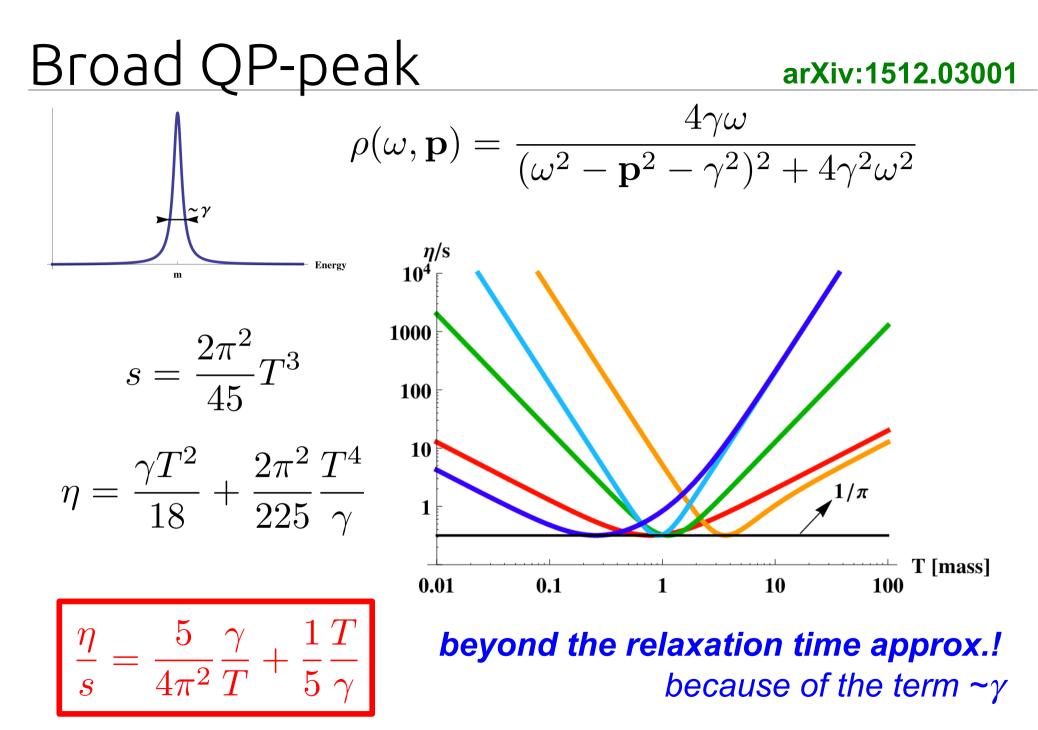
$$\eta = \int_{0}^{\infty} dp \left(\frac{\partial \text{Re}G^{-1}}{\partial p} \rho(p) \right)^2 T^4 \lambda_{\eta}(p/T)$$

EQP – thermo. & transport arXiv:1512.03001

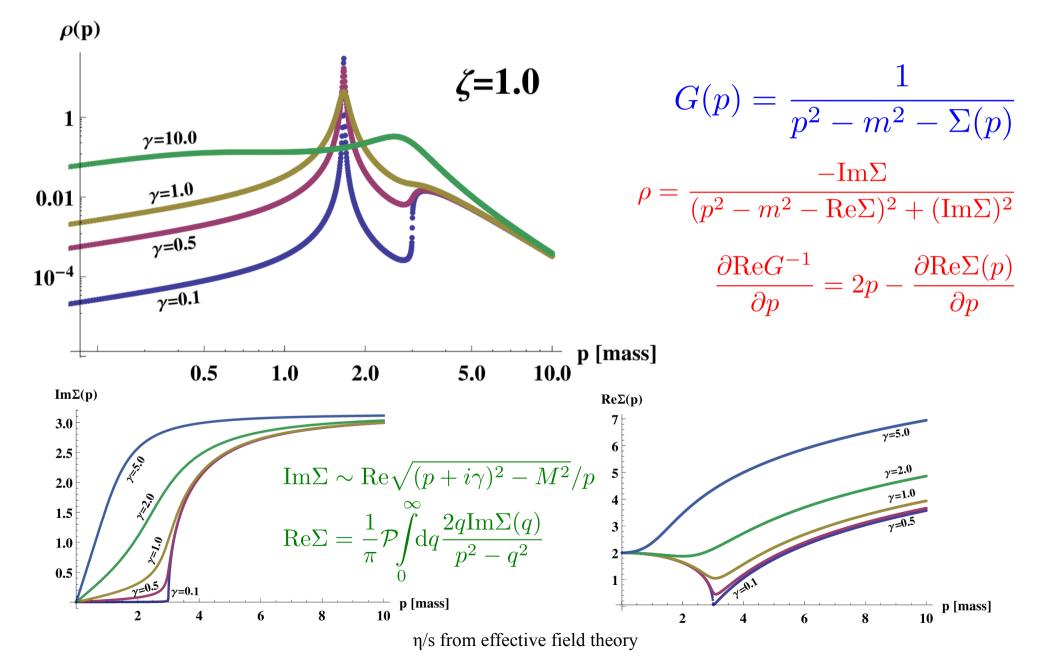


EQP – thermo. & transport arXiv:1512.03001

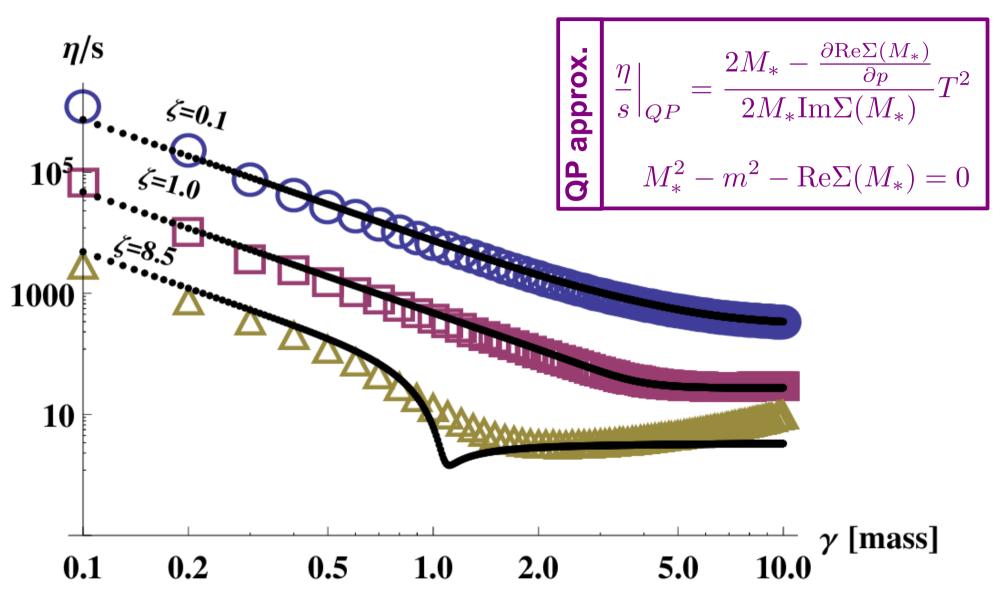




Beyond the QP-peak



Beyond the QP-peak



Non-universal lower bound to η/s $s = \int_{0}^{\infty} dpg(p)T^{3}\chi_{s}(p/T)$ $g = \frac{\partial \text{Re}G^{-1}}{\partial p}\rho$ $\eta = \int_{0}^{\infty} dpg^{2}(p)T^{4}\lambda_{\eta}(p/T)$

Non-universal lower bound to η/s arXiv:1512.03001 $s = \int_{0}^{\infty} \mathrm{d}p g(p) T^{3} \chi_{s}(p/T)$ $g = \frac{\partial \mathrm{Re} G^{-1}}{\partial p} \rho$ $\eta = \int_{0}^{\bar{}} \mathrm{d}p g^2(p) T^4 \lambda_{\eta}(p/T)$ $\frac{\eta}{s} \ge \text{const.} \cdot \frac{s}{T^3} \qquad \qquad \rho^*(p) \sim e^{-\frac{\eta}{s} \frac{p^2}{T^2}}$

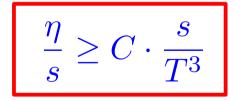
no poles!

What have we learnt?

• continuum of states besides the QP-peak: reduced η/s , the less QP-like the spectrum is, $\frac{\eta}{s} = A \cdot \frac{T}{\Gamma}$

the more fluent the system it describes

- non-universal lower bound on η/s constrained by thermodynamics
- possible estimation of transport properties from thermodynamic quantities taken from measurements



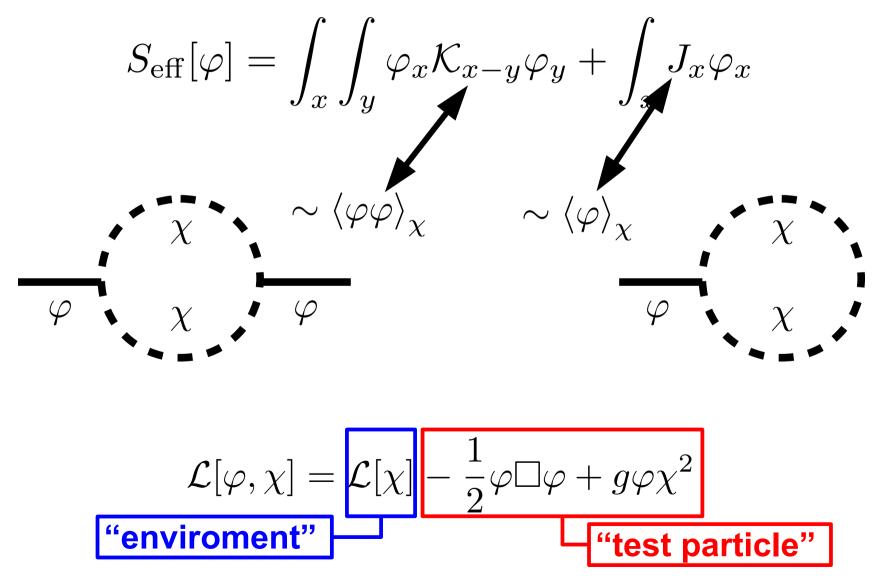
 $\frac{\eta}{s} = A \cdot \frac{T}{\Gamma} + B \cdot \frac{\Gamma}{T} \ge 2\sqrt{AB}$

Thank you for the attention! Questions? Comments?

arXiv: 1512.03001

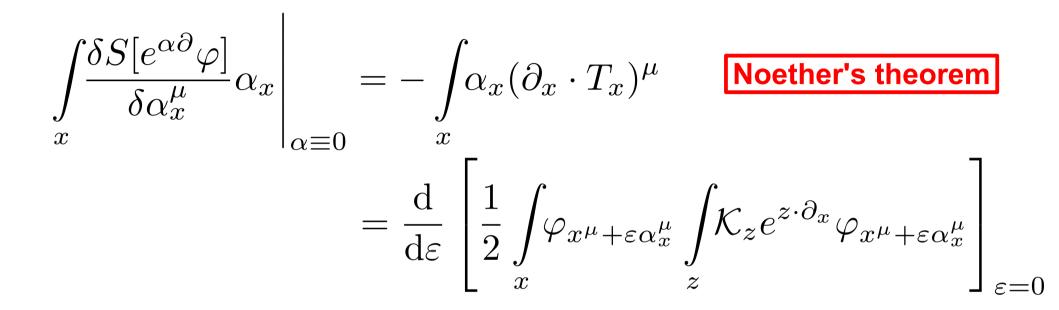
Back-up slides

Extended quasi-particles



 η/s from effective field theory

EQP – energy-momentum conservation



The energy-momentum tensor in Fourier-space:

$$T_k^{\mu\nu} = \frac{1}{2} \iint_{p=q} \varphi_{-p} \varphi_q \delta_{k+p-q} \frac{p^{\mu}(p+q)^{\nu}}{q^2 - p^2} (K_q - K_p) \stackrel{k \to 0}{\to} \frac{1}{2} \iint_{p} \varphi_{-p} \varphi_p \frac{p^{\mu} p^{\nu}}{|p|} \frac{\partial K_p}{\partial |p|}$$

EQP – energy-momentum conservation

Т

$$\int_{x} \frac{\delta S[e^{\alpha \partial} \varphi]}{\delta \alpha_{x}^{\mu}} \alpha_{x} \bigg|_{\alpha \equiv 0} = -\int_{x} \alpha_{x} (\partial_{x} \cdot T_{x})^{\mu} \qquad \text{Noether's theorem}$$
$$= \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \left[\frac{1}{2} \int_{x} \varphi_{x^{\mu} + \varepsilon \alpha_{x}^{\mu}} \int_{z} \mathcal{K}_{z} e^{z \cdot \partial_{x}} \varphi_{x^{\mu} + \varepsilon \alpha_{x}^{\mu}} \right]_{\varepsilon = 0}$$

The energy-momentum tensor in thermal equilibrium

$$\langle T_{x=0}^{\mu\nu} \rangle = \frac{1}{2} \int_{p} \frac{p^{\mu} p^{\nu}}{|p|} \frac{\partial K_{p}}{\partial |p|} \rho_{p} \left(n(p^{0}/T) + \frac{1}{2} \right)$$

EQP – linear response theory

perturbation in A

$$\delta H = \int_{y} A_{y} h_{y}$$
$$\delta \langle B_{x} \rangle = \int_{y} i \mathcal{G}_{BA}^{ra} (x - y) h_{y}$$

change of avr. **B** to linear order in the strength of the perturbation

the linear response-function:

$$i\mathcal{G}_{BA}^{ra}(z) = \theta_{z^0} \left\langle [B_z, A_0] \right\rangle = \theta_{z^0} \rho_{BA}(z)$$

in case of the energy-momentum in EQP:

$$\rho_{T^{ij}T^{ij}}(k) = iG_{T^{ij}T^{ij}}^{21}(k) - iG_{T^{ij}T^{ij}}^{12}(k) = = \frac{1}{4} \int_{p} \left((D_{p,p+k}^{ij})^2 + D_{p,p+k}^{ij} D_{p+k,p}^{ij} \right) \rho_p \rho_{p+k}(n_p - n_{p+k})$$

EQP – linear response theory

perturbation in A

$$\delta H = \int_{y} A_{y} h_{y}$$

change of avr. **B** to linear order in the strength of the perturbation

$$\delta \left\langle B_x \right\rangle = \int_y i \mathcal{G}_{BA}^{ra} (x - y) h_y$$

$$\eta = \lim_{\omega \to 0} \frac{\rho_{T^{ij}T^{ij}}(\omega, \mathbf{k} = 0)}{\omega} = \frac{1}{2} \int_{p} \left(\frac{p^1 p^2}{p^0} \frac{\partial K_p}{\partial p^0} \rho_p \right)^2 \frac{-n'(p^0/T)}{T}$$

in case of the energy-momentum in EQP:

$$\rho_{T^{ij}T^{ij}}(k) = iG_{T^{ij}T^{ij}}^{21}(k) - iG_{T^{ij}T^{ij}}^{12}(k) = = \frac{1}{4} \int_{p} \left((D_{p,p+k}^{ij})^2 + D_{p,p+k}^{ij} D_{p+k,p}^{ij} \right) \rho_p \rho_{p+k}(n_p - n_{p+k})$$