Interacting Fermion Stars in Kaluza-Klein World

Szilvia Karsai
karsai.szilvia @wigner.mta.hu

Gergely Gábor Barnaföldi Emese Forgács-Dajka Péter Pósfay
Béla Lukács
\rightarrow Motivation for K-K theory \& Stars
\rightarrow Special solution in $1+4 \mathrm{D}$ spacetime
\rightarrow Interacting Fermion Star in $1+4 D$
\rightarrow M-R relation via varying coupling constant

1. Motivation for introducing extra dimensions

\rightarrow Standard matter by Standard Model

- Electromagnetic;
- Weak and
- Strong interactions
\rightarrow Grand Unified Theory...
- Gravity and QFT are not fitting into the same picture
- GR locally valid; curved space-time
- QFT globally valid; Minkowski

($=$ now)

1. Motivation for introducing extra dimensions

\rightarrow Standard matter by Standard Model

- Electromagnetic;
- Weak and
- Strong interactions
\rightarrow Grand Unified Theory...
- Gravity and QFT are not fitting into the same picture
- GR locally valid; curved space-time
- QFT globally valid; Minkowski

\rightarrow Possible way:

- Geometrization of elementary forces
- Introducing new dimensions
- Let's see the simplest case: $d_{c}=1$!

(= now)

2. Extra space-dimension as a new degree of freedom

\rightarrow Possible existence of extra dimensions at microscopical scales at extreme energies
\rightarrow Particles with enough energy are able to move in the extra direction
\rightarrow Motion in the extra direction generates an extra mass term (excited mass)
\rightarrow Strangeness as a new degree of freedom:
Connection between $\overline{\boldsymbol{m}}=\boldsymbol{m}_{\boldsymbol{S}}$ and \boldsymbol{R}_{c} radius:

$$
\begin{aligned}
& E_{5}=\sqrt{\underline{k}^{2}+\left(\frac{n}{\boldsymbol{R}_{\boldsymbol{C}}}\right)^{2}+m^{2}}=\sqrt{\underline{k}^{2}+\overline{\boldsymbol{m}}^{2}} \\
& \overline{\boldsymbol{m}}^{2}=\left(\frac{n}{\boldsymbol{R}_{\boldsymbol{C}}}\right)^{2}+m^{2}
\end{aligned}
$$

m : light (u, d) quark mass
n : excitation number, $n=1$
\bar{m} : e.g. heavy (s) quark mass

2. Extra space-dimension as a new degree of freedom

\rightarrow Extra $\mathbf{5}^{\text {th }} \mathbf{D}$ is compactified in an \mathbf{S}^{1} circle with radius \boldsymbol{R}_{c}
\rightarrow periodical boundary condition \rightarrow quantization condition

$$
\psi\left(x_{5}\right) \approx \mathrm{e}^{i k_{5} \cdot x_{5}} \text { and } \psi\left(x_{5}+2 \pi \boldsymbol{R}_{C}\right) \sim \psi\left(x_{5}\right) \quad \rightarrow \quad k_{5}=\frac{n}{\boldsymbol{R}_{C}}
$$

k_{5} : momentum in the $5^{\text {th }}$ direction; \mathbf{x}_{5} : coordinate in the $5^{\text {th }}$ direction; $\boldsymbol{n} \in \mathbb{Z}^{+}$
\rightarrow Strangeness as a new degree of freedom:
Connection between $\overline{\boldsymbol{m}}=\boldsymbol{m}_{s}$ and \boldsymbol{R}_{c} radius:

$$
\begin{aligned}
& E_{5}=\sqrt{\underline{k}^{2}+\left(\frac{n}{\boldsymbol{R}_{C}}\right)^{2}+m^{2}}=\sqrt{\underline{k}^{2}+\bar{m}^{2}} \\
& \overline{\boldsymbol{m}}^{2}=\left(\frac{n}{\boldsymbol{R}_{C}}\right)^{2}+m^{2}
\end{aligned}
$$

m : light (u, d) quark mass
n : excitation number, $\mathrm{n}=1$
$\overline{\boldsymbol{m}}$: e.g. heavy (s) quark mass

3. Thermodynamics: potential for a 1+4D Fermion gas

\rightarrow 1+3D two component Fermi-gas \rightarrow 1+4D one component Fermi-gas
$\rightarrow\left(n^{0}, N\right) \rightarrow n^{0}$ and its extra dimensional excitation
\rightarrow Excited state: new degree of freedom appearing in the momentum space of the particle on a given energy
\rightarrow In equilibrium: $\mu=\mu_{\mathrm{n}}+\mu_{\mathrm{n} _ \text {exc }}$

$$
\begin{aligned}
& \Omega_{5}=-2 \frac{V_{4}}{\beta} \int \frac{d^{4} k}{(4 \pi)^{4}}\left[\ln \left(1+e^{-\beta\left(\sqrt{\underline{k}^{2}+\bar{m}^{2}}-\mu\right)}\right)(+\mu \leftarrow \rightarrow-\mu)\right] \\
& \begin{cases}\overline{\boldsymbol{m}}^{2}=\left(n / \boldsymbol{R}_{C}\right)^{2}+m^{2} & \text { excited mass } \\
\int_{0}^{\infty} \mathrm{d}^{4} \boldsymbol{k}=\int_{0}^{\infty} \mathrm{d}^{3} \boldsymbol{k} \mathrm{~d} k_{5} \rightarrow \frac{1}{\boldsymbol{R}_{C}} \sum_{i=\min (n)}^{\max (n)} \int_{0}^{\infty} \mathrm{d}^{3} \boldsymbol{k} & \text { discretization } \\
V_{5}=2 \pi \boldsymbol{R}_{C} V_{4} & 1+4 \mathrm{D} \text { volume }\end{cases} \\
& \Omega_{5}=\sum_{n} \Omega_{4}\left(m^{2}+\frac{n^{2}}{\boldsymbol{R}_{C}^{2}}\right)=\Omega_{4}(\overline{\boldsymbol{m}})
\end{aligned}
$$

3. Thermodynamics: potential for a 1+4D Fermion gas

$\rightarrow 1+3 \mathrm{two}$ component Fermi-gas $\rightarrow 1+4 \mathrm{D}$ onecomponent Fermi-gas
$\rightarrow\left(n^{0}, x\right) \rightarrow n^{0}$ and its extra dimensional excitation:
\rightarrow Excited state: new degree of freedom appearing in the momentum space of the particle on a given energy
\rightarrow In equilibrium: $\mu=\mu_{\mathrm{n}}+\mu_{\mathrm{n} _ \text {exc }}$

> For 1+4D EOS

$$
\begin{aligned}
\widetilde{\widetilde{\epsilon}} & =\left.\frac{\widetilde{g}}{(2 \pi)^{4}} \int_{0}^{\widetilde{\widetilde{F}_{F}}} \widetilde{\varepsilon} \mathrm{~d}^{4} \widetilde{\mathbf{k}}\right|_{T=0}= \\
& =\frac{\widetilde{g}}{16 \pi^{3} R_{C}} \sum_{\kappa=0}^{1}\left[\widetilde{\mu} \sqrt{\widetilde{\mu}^{2}-\widetilde{m}^{2}}\left(\widetilde{\mu}^{2}-\frac{1}{2} \widetilde{m}^{2}\right)+\frac{\widetilde{m}^{4}}{2} \ln \left|\frac{\widetilde{m}}{\widetilde{\mu}+\sqrt{\widetilde{\mu}^{2}-\widetilde{m}^{2}}}\right|\right] \\
\underline{\widetilde{p}} & =-\left.\frac{1}{2 \pi R_{C}} \frac{\partial \widetilde{\Omega}}{\partial V}\right|_{T=0}= \\
& =\frac{\widetilde{g}}{48 \pi^{3} R_{C}} \sum_{\kappa=0}^{1}\left[\widetilde{\mu} \sqrt{\widetilde{\mu}^{2}-\widetilde{m}^{2}}\left(\widetilde{\mu}^{2}-\frac{5}{2} \widetilde{m}^{2}\right)+\frac{3}{2} \widetilde{m}^{4} \ln \left|\frac{\widetilde{m}}{\widetilde{\mu}+\sqrt{\widetilde{\mu}^{2}-\widetilde{m}^{2}}}\right|\right] .
\end{aligned}
$$

3. Thermodynamics: potential for a 1+4D Fermion gas

$\rightarrow 1+3 \mathrm{two}$ component Fermi-gas $\rightarrow 1+4 \mathrm{D}$ onecomponent Fermi-gas
$\rightarrow\left(\mathrm{n}^{0}, \mathrm{X}\right) \rightarrow \mathrm{n}^{0}$ and its extra dimensional excitation:
\rightarrow Excited state: new degree of freedom appearing in the momentum space of the particle on a given energy
\rightarrow In equilibrium: $\mu=\mu_{\mathrm{n}}+\mu_{\mathrm{n}_{\mathrm{-}} \mathrm{exc}}$
For 1+4D EOS

$$
\begin{aligned}
\widetilde{\epsilon} & =\left.\frac{\widetilde{g}}{(2 \pi)^{4}} \int_{0}^{\widetilde{k_{F}}} \widetilde{\varepsilon} \mathrm{~d}^{4} \widetilde{\mathbf{k}}\right|_{T=0}= \\
& =\frac{\widetilde{g}}{16 \pi^{3} R_{C}} \sum_{\kappa=0}^{1}\left[\widetilde{\mu} \sqrt{\widetilde{\mu}^{2}-\widetilde{m}^{2}}\left(\widetilde{\mu}^{2}-\frac{1}{2} \frac{\widetilde{m}^{2}}{2}\right)+\frac{\widetilde{m}^{2}}{2} \ln \left|\frac{\left.\overline{\boldsymbol{m}}^{2} / \boldsymbol{R}_{C}\right)^{2}+m^{2}}{\widetilde{\mu}+\sqrt{\widetilde{\mu}^{2}-\left(\widetilde{m}^{2}\right.} \mid}\right|\right] \\
\underline{\widetilde{p}} & =-\left.\frac{1}{2 \pi R_{C}} \frac{\partial \widetilde{\Omega}}{\partial V}\right|_{T=0}= \\
& =\frac{\widetilde{g}}{48 \pi^{3} R_{C}} \sum_{\kappa=0}^{1}\left[\widetilde{\mu} \sqrt{\widetilde{\mu}^{2}-\widetilde{m}}\left(\widetilde{\mu}^{2}-\frac{5}{2} \widetilde{m}^{2}\right)+\frac{3}{2} \widetilde{m}^{4} \ln \left|\frac{\widetilde{m}}{\widetilde{\mu}+\sqrt{\widetilde{\mu}^{2}-\widetilde{m}^{2}}}\right|\right]
\end{aligned}
$$

4. GR: Special solution in 1+4D spacetime

Assumptions for generalization:

i. $1+\left(3+d_{c}\right)$ dimensional space time: dimensions are space-like, except first one: time-like
ii. GR is the same as in $1+3 \mathrm{D}$
'Equivalence Principle' is unchanged
iii. All causality postulates are the same as in $1+3 \mathrm{D}$
iv. Extra space-like dimensions are microscopical
v. Complete Killing-symmetry in the extra microscopical subspace
\rightarrow Static, spherically symmetric compact object
\rightarrow Ideal relativistic fluid with isotropy
[G. G. Barnaföldi, P. Lévai, B. Lukács et al. Astron. Nachr. 328, 809 (2007)]

4. GR: Special solution in 1+4D spacetime

Assumptions for generalization:

i. $1+\left(3+d_{c}\right)$ dimensional space time: dimensions are space-like, except first one: time-like
ii. GR is the same as in $1+3 \mathrm{D}$
'Equivalence Principle' is unchanged
iii. All causality postulates are the same as in $1+3 \mathrm{D}$
iv. Extra space-like dimensions are microscopical
v. Complete Killing-symmetry in the extra microscopical subspace
\rightarrow Static, spherically symmetric compact object
\rightarrow Ideal relativistic fluid with isotropy

Assumptions in case of a compact star:
\rightarrow Spherical symmetry
\rightarrow O(3) symmetry
\rightarrow Static picture $\rightarrow g_{\mu 0}=0$ and $g_{\mu v, 0}=0$
$\rightarrow 4 \mathrm{D} \mathrm{g}^{\mathrm{av}}$ is x^{5} independent
\rightarrow Killing transformations \rightarrow $g_{01}=0$ and $g_{51}=0$
[G. G. Barnaföldi, P. Lévai, B. Lukács et al. Astron. Nachr. 328, 809 (2007)]

4. GR: Special solution in 1+4D spacetime

Assumptions for generalization:

i. $1+\left(3+d_{c}\right)$ dimensional space time: dimensions are space-like, except first one: time-like
ii. GR is the same as in $1+3 \mathrm{D}$
'Equivalence Principle' is unchanged
iii. All causality postulates are the same as in $1+3 \mathrm{D}$
iv. Extra space-like dimensions are microscopical
v. Complete Killing-symmetry in the extra microscopical subspace

Coordinates:
$t=x^{0} ; r=x^{1} ; 9=x^{2} ; \varphi=x^{3} ; \chi=x^{5}$
$g_{\mu \nu}=\operatorname{diag}\left(\mathrm{e}^{2 v},-\mathrm{e}^{2 \lambda},-r^{2,}-r^{2} \sin ^{2} \vartheta, \mathrm{e}^{2 \Phi}\right)$

Radial functions for the metric components: $v(r), \lambda(r), \Phi(r)$
\rightarrow Static, spherically symmetric compact object
\rightarrow Ideal relativistic fluid with isotropy

Assumptions in case of a compact star:
\rightarrow Spherical symmetry
\rightarrow O(3) symmetry
\rightarrow Static picture $\rightarrow g_{\mu 0}=0$ and $g_{u v, 0}=0$
$\rightarrow 4 \mathrm{D} \mathrm{g}^{\mathrm{av}}$ is x^{5} independent
\rightarrow Killing transformations \rightarrow $g_{01}=0$ and $g_{51}=0$
[G. G. Barnaföldi, P. Lévai, B. Lukács et al. Astron. Nachr. 328, 809 (2007)]

5. GR: TOV equation in 1+4D spacetime

\rightarrow 'd $\Phi / \mathrm{dr}=0$ ' special case:

$$
\frac{\mathrm{d} \boldsymbol{p}(r)}{\mathrm{d} r}=-\frac{[\boldsymbol{p}(r)+\boldsymbol{\epsilon}(r)]\left[\boldsymbol{M}(r)+4 \pi r^{3} \boldsymbol{p}(r)\right]}{r[r-2 \boldsymbol{M}(r)]}
$$

5. TOV equation in 1+4D spacetime

$\rightarrow \quad ' d \Phi / d r=0 '$ special case:

$$
\frac{\mathrm{d} \boldsymbol{p}(r)}{\mathrm{d} r}=-\frac{[\boldsymbol{p}(r)+\boldsymbol{\epsilon}(r)]\left[\boldsymbol{M}(r)+4 \pi r^{3} \boldsymbol{p}(r)\right]}{r[r-2 \boldsymbol{M}(r)]}
$$

1+3D hyperon star:
$\mathrm{n}(\mathrm{u}, \mathrm{d}, \mathrm{d}), \Lambda(\mathrm{u}, \mathrm{d}, \mathrm{s})$
(non-interacting) vs.
1+4D fermion star: with
$k_{F}>\hbar / R_{C}$
1_{c} extra dimension
(non-interacting)
constraint: $\mathbf{n = 1}$

6. $M-R$ relations with different R_{C}

\rightarrow 'd $\Phi / d r=0$ ' special case:

$$
\frac{\mathrm{d} \boldsymbol{p}(r)}{\mathrm{d} r}=-\frac{[\boldsymbol{p}(r)+\boldsymbol{\epsilon}(r)]\left[\boldsymbol{M}(r)+4 \pi r^{3} \boldsymbol{p}(r)\right]}{r[r-2 \boldsymbol{M}(r)]}
$$

1+3D hyperon star:

$\mathrm{n}(\mathrm{u}, \mathrm{d}, \mathrm{d}), \Lambda(\mathrm{u}, \mathrm{d}, \mathrm{s})$
(non-interacting) vs.
1+4D fermion star: with $k_{F}>\hbar / R_{C}$
1_{c} extra dimension
(non-interacting)
constraint: $\mathrm{n}=1$

- excitation with:
- larger the
$\mathbf{R}_{\mathbf{c}} \rightarrow \Delta m_{n} \sim \frac{n}{\boldsymbol{R}_{C}}$
smaller the excitations to m_{n}
- similar solutions

6. $M-R$ relations with different R_{C}

\rightarrow 'd $\Phi / d r=0$ ' special case:

$$
\frac{\mathrm{d} \boldsymbol{p}(r)}{\mathrm{d} r}=-\frac{[\boldsymbol{p}(r)+\boldsymbol{\epsilon}(r)]\left[\boldsymbol{M}(r)+4 \pi r^{3} \boldsymbol{p}(r)\right]}{r[r-2 \boldsymbol{M}(r)]}
$$

1+3D hyperon star:

$\mathrm{n}(\mathrm{u}, \mathrm{d}, \mathrm{d}), \Lambda(\mathrm{u}, \mathrm{d}, \mathrm{s})$
(non-interacting) vs.
1+4D fermion star: with $k_{F}>\hbar / R_{C}$
1_{c} extra dimension
(non-interacting)
constraint: $\mathrm{n}=1$

- excitation with:
- larger the
$\mathbf{R}_{\mathbf{c}} \rightarrow \Delta m_{n} \sim \frac{n}{\boldsymbol{R}_{C}}$
smaller the excitations to m_{n}
- similar solutions

6. $M-R$ relations with different R_{C}

\rightarrow But without interaction $M_{\text {max }}$ too small!
\rightarrow On a larger scale compared to a realistic 1+3D interacting hyperon eos ($\mathrm{n}, \Lambda, \Sigma, \Xi$) (Petrik et al. 2012)

1+3D hyperon star:

$\mathrm{n}(\mathrm{u}, \mathrm{d}, \mathrm{d}), \Lambda(\mathrm{u}, \mathrm{d}, \mathrm{s})$
(non-interacting) vs.
1+4D fermion star: with
$k_{F}>\hbar / R_{C}$
1_{c} extra dimension
(non-interacting)
constraint: $\mathrm{n}=1$

- excitation with:
- larger the
$\mathbf{R}_{\mathrm{c}} \rightarrow \Delta m_{n} \sim \frac{n}{\boldsymbol{R}_{G}}$
smaller the excitations to m_{n}
- similar solutions

7. Introducing a repulsive interaction for 1+3D

\rightarrow Introducing $u(n)$ repulsive potential depending on density: $u(n) \sim n$
\rightarrow In a linear approximation: $u(n)=\xi n \rightarrow$ results a contribution of the coupling constant in $\mathbf{p}, \boldsymbol{\varepsilon}$
J. Zimanyi, B. Lukacs, P. Levai, J.P. Bondorf: „An Interpretable Family of Equation of State for Dense Hadronic Matter", Nucl.Phys. A484 (1988) 647

$$
\begin{array}{ll}
\varepsilon(\mu)=\varepsilon_{0}[\mu-u(n)]+\boldsymbol{\varepsilon}_{\mathrm{int}} & \boldsymbol{\varepsilon}_{\mathrm{int}}=\int_{0}^{n} u(n) \mathrm{d} n=\int_{0}^{n} \xi n \mathrm{~d} n=\frac{1}{2} \xi n^{2} \\
p(\mu)=p_{0}[\mu-u(n)]+\boldsymbol{p}_{\mathrm{int}} & \boldsymbol{p}_{\mathrm{int}}=n u(n)-\int_{0}^{n} u(n) \mathrm{d} n=n \xi n \int_{0}^{n} \xi n \mathrm{~d} n=\xi n^{2}-\frac{1}{2} \xi n^{2}=\frac{1}{2} \xi n^{2} \\
n(\mu)=u_{0}[\mu-u(n)]=u_{0}\left[\mu_{0}\right] &
\end{array}
$$

8. Introducing a repulsive interaction for 1+3D

\rightarrow Introducing $u(n)$ repulsive potential depending on density: $u(n) \sim n$
\rightarrow In a linear approximation: $u(n)=\xi n \rightarrow$ results a contribution of the coupling constant in $\mathbf{p}, \boldsymbol{\varepsilon}$
J. Zimanyi, B. Lukacs, P. Levai, J.P. Bondorf: „An Interpretable Family of Equation of State for
Dense Hadronic Matter", Nucl.Phys. A484 (1988) 647
\rightarrow for the reference $1+3 \mathrm{D}\left(\mathrm{n}^{0}, \Lambda^{0}\right)$ eos ξ with smoothly varying values from $10^{-4}<\xi<10^{-1}$
\rightarrow increasing the magnitude of $\boldsymbol{\xi} \rightarrow$ results increasing $M_{\text {max }}, R_{\text {max }}$

Interacting $1+3 \mathrm{D}$ n $-\Lambda$ hyperonstar models via varying ξ coupling constant

8. Introducing a repulsive interaction for 1+3D

\rightarrow Introducing $u(n)$ repulsive potential depending on density: $u(n) \sim n$
\rightarrow In a linear approximation: $u(n)=\xi n \rightarrow$ results a contribution of the coupling constant in $\mathbf{p}, \boldsymbol{\varepsilon}$
J. Zimanyi, B. Lukacs, P. Levai, J.P. Bondorf: „An Interpretable Family of Equation of State for
Dense Hadronic Matter", Nucl.Phys. A484 (1988) 647
\rightarrow for the reference $1+3 \mathrm{D}\left(\mathrm{n}^{0}, \Lambda^{0}\right)$ eos ξ with smoothly varying values from $10^{-4}<\xi<10^{-1}$
\rightarrow increasing the magnitude of $\boldsymbol{\xi} \rightarrow$ results increasing $\mathrm{M}_{\text {max }}, \mathrm{R}_{\text {max }}$

Interacting $1+3 \mathrm{D}$ n $-\Lambda$ hyperonstar models via varying ξ coupling constant

8. Introducing a repulsive interaction for 1+3D

\rightarrow Introducing $u(n)$ repulsive potential depending on density: $u(n) \sim n$
\rightarrow In a linear approximation: $u(n)=\xi n \rightarrow$ results a contribution of the coupling constant in $\mathbf{p}, \boldsymbol{\varepsilon}$
\rightarrow for the reference $1+3 \mathrm{D}\left(\mathrm{n}^{0}, \Lambda^{0}\right)$ eos ξ with smoothly varying values from $10^{-4}<\xi<10^{-1}$
\rightarrow increasing the magnitude of $\boldsymbol{\xi}$ \rightarrow results increasing $\mathrm{M}_{\text {max }}, \mathrm{R}_{\max }$
\rightarrow Based on meauserements select the most reasonable one which nearly approaches
$\rightarrow \mathbf{2} \mathbf{M}_{\text {sol }}$ (Demorest et al. 2010)
\rightarrow 7-11 km (Guillot et al. 2013)
$\rightarrow \xi=0.04$!

Interacting $1+3 \mathrm{D} n-\Lambda$ hyperonstar models via varying ξ coupling constant

9. Selecting $\xi=0.04$ eos \rightarrow applying for 1+4D

$\rightarrow \mathbf{1 + 4} \mathbf{D}$ fermion star models: trying different \mathbf{R}_{c} (from 0.03 fm to 1 fm) for $\boldsymbol{\xi}=\mathbf{0 . 0 4}$ case
\rightarrow compared to the non-interacting case \rightarrow when interaction switched in: varying the size of the microsopical extra dimension $\left(\mathbf{R}_{\mathrm{c}}\right)$ has less effect on $M_{\text {max }}$

non-interacting 1+4D models

Non-interacting 1+4D models: $\xi=0$

Interacting 1+4D models: $\xi=0.04$

9. Selecting $\xi=0.04$ eos \rightarrow applying for 1+4D

10. Probing different magnitudes of $\boldsymbol{\xi}$

\rightarrow For the same set of $\mathbf{R}_{\mathbf{c}}$ values

$$
\begin{array}{ll}
R_{c}=0.08 \mathrm{fm} \rightarrow \mathrm{~m}_{\text {exc. }}=6644 \mathrm{MeV} & \mathrm{R}_{\mathrm{c}}=0.5 \mathrm{fm} \rightarrow \mathrm{~m}_{\text {exc. }}=1019 \mathrm{MeV} \\
\mathrm{R}_{\mathrm{c}}=0.05 \mathrm{fm} \rightarrow \mathrm{~m}_{\text {exc. }}=2640 \mathrm{MeV} & \mathrm{R}_{\mathrm{c}}=1 \mathrm{fm} \rightarrow \mathrm{~m}_{\text {exc. }}=960 \mathrm{MeV} \\
\mathrm{R}_{\mathrm{C}}=0.33 \mathrm{fm} \rightarrow \mathrm{~m}_{\text {exc. }}=1113 \mathrm{MeV} &
\end{array}
$$

\rightarrow greater the $\boldsymbol{\xi} \sim$ stronger the interaction
\rightarrow varying the size of the microscopical extra dimension (\mathbf{R}_{c}) has less effect on M \max
\rightarrow Appropriate setting of parameters can result realistic models between measured bounds of neutron star masses (1.4-2.1 $\mathrm{M}_{\text {sol }}$) and radii $(7-11 \mathrm{~km})$

Summary

\rightarrow Fermion stars in 1+4D were analyzed:
\rightarrow Assumption:

- Static, spherical Schwarzschild-like space-time; ideal fluid
- TOV-like eqs. with specific, but exact (stable) solution
\rightarrow Solution of non-interacting:
- overlaps with (n^{0}, Λ^{0}) 1+3D strange star models if \mathbf{R}_{c} is set to m_{s}
- larger \mathbf{R}_{c} results \rightarrow decrease in star's mass
- smaller \mathbf{R}_{c} generates a saturation in $\mathrm{M}_{\text {max }}$: mass limit
- without interaction $M_{\text {max }}$ is too small (under $1 M_{\text {sol }}$)
\rightarrow Introducing a repulsive interaction for 1+3D and 1+4D eos:
- repulsive potential is proportional with the density, $u(n)=\xi n$
- models can reach the realistic mass range (1.4-2 $\mathrm{M}_{\text {sol }}$) by setting ξ coupling constant in an appropriate range stronger the interaction (increasing ξ) \rightarrow larger the star, $M_{\text {max }}$ strong interaction supresses the effect of size variation of the extraD

Thank You for Your attention!

\rightarrow Fermion stars in 1+4D were analyzed:
\rightarrow Assumption:
Static, spherical Schwarzschild-like spacetime; ideal fluid TOV-like eqs. With specific, but exact (stable) solytion
\rightarrow Solution of non-interacting:
overlaps with $\left(n^{0}, \Lambda^{0}\right) 1+3 D$ strange star model' if R_{c} is set to m_{s} larger \mathbf{R}_{c} results \rightarrow decrease in star's mass smaller \mathbf{R}_{c} generates a saturation in $\mathbf{M}_{\text {max }}$: mass limit without interaction $M_{\max }$ is too small (under $1 M_{\text {sol }}$)
\rightarrow Introducing a repulsive interaction for $1+3 \mathrm{D}$ and $1+4 \mathrm{D}$ eos: repulsive potential is proportional with the density, $u(n)=\xi n$ models can reach the realistic mass range $\left(1.4-2 M_{\text {sol }}\right)$ by setting ξ coupling constant in an appropriate range stronger the interaction (increasing 5) \rightarrow larger the star, $M_{\text {max }}$ strong interaction supresses the effect of size variation of the extraD

Backup slides

$\varepsilon_{\text {centr }}-R$ relations with different R_{c}
Non-interacting 1+4D models: $\xi=0$

- excitation with:
- larger the
$\mathbf{R}_{\mathbf{c}} \rightarrow \Delta m_{n} \sim \frac{n}{\boldsymbol{R}_{C}}$
- smaller the excitations to m_{n}
- similar solutions

1+3D hyperon star: $\mathrm{n}^{0}, \Lambda^{0}$ (non-interacting) vs.
1+4D fermion star: with
$k_{F}>\hbar / R_{C}$
1_{c} extra dimension (non-interacting)
constraint: $\mathbf{n = 1}$
$\varepsilon_{\text {centr }}-M$ relations with different R_{c}

Thermodynamics for 1+4D

(a) Thermodynamical potential for 1+4D Fermion gas

$$
\begin{array}{r}
\Omega_{5}=-2 \frac{V_{4}}{\beta} \int \frac{\mathrm{~d}^{4} k}{(4 \pi)^{4}}\left[\ln \left(1+e^{-\beta\left(\sqrt{k^{2}+\bar{m}^{2}}-\mu\right)}\right)(+\mu \leftarrow \rightarrow-\mu)\right] \\
\bar{m}^{2}=\left(n / \boldsymbol{R}_{C}\right)^{2}+m^{2} \\
\int \mathrm{~d} k_{5} \rightarrow \frac{1}{\boldsymbol{R}_{C}} \Sigma_{n} \\
\text { excited mass } \\
V_{5}=2 \pi \boldsymbol{R}_{C} V_{4}
\end{array} \text { discretization } \begin{array}{r}
\text { volume }
\end{array}
$$

(b) Thermodynamical potential and its quantities

$$
\begin{aligned}
& \Omega_{5}=\sum_{n} \Omega_{4}\left(m^{2}+\frac{n^{2}}{\boldsymbol{R}_{C}}\right)=\Omega_{4}(\overline{\boldsymbol{m}}) \\
& p=-\frac{1}{2 \pi \boldsymbol{R}_{C}} \frac{\partial \Omega_{5}}{\partial V} \quad \boldsymbol{p}_{5}=-\frac{1}{2 \pi V} \frac{\Omega_{5}}{\partial \boldsymbol{R}_{C}} \quad \epsilon=\frac{U}{V_{4}}
\end{aligned}
$$

5. GR: Energy-momentum tensor for 1+4D matter

(a) Energy-momentum tensor for anisotrop liquid:

$$
T_{\mu v}:=\epsilon u_{\mu} u_{v}-p\left(g_{\mu v}-u_{\mu} u_{v}+v_{\mu} v_{v}\right)-p_{5} v_{\mu} v_{v}
$$

Liquid is isotrop for 3 dimension: $T_{1}^{1}=T_{2}^{2}=T_{3}^{3}=p$
BUT pressure $\boldsymbol{T}_{5}^{5}=\boldsymbol{p}_{5}$ in the $5^{\text {th }}$ direction is anisotrop, with energy-density:
$T_{\mu \nu}=\operatorname{diag}\left(\epsilon \mathrm{e}^{2 v}, p \mathrm{e}^{2 \lambda}, p r^{2}, p r^{2} \sin ^{2} \vartheta, p_{5} \mathrm{e}^{2 \Phi}\right)$
(b) Let's construct the $\boldsymbol{R}_{\mu \nu} \mathbf{R i c c i}$ tensor and \boldsymbol{R} Ricci scalar:
$R:=R_{i}^{i}=R_{1}^{1}+R_{2}^{2}+R_{3}^{3}+R_{4}^{4}+R_{5}^{5}$

6. GR: Einstein equation in $1+4 \mathrm{D}$ spacetime

\rightarrow according to new dimensions $10 \rightarrow 15$ equations BUT because of symmetries: 5 components of the Einstein equation:
$-8 \pi G \epsilon=\mathrm{e}^{-2 \lambda}\left[\Phi^{\prime \prime}+\Phi^{\prime^{2}}-\lambda^{\prime} \Phi^{\prime}+\frac{2 \Phi^{\prime}}{r}-\frac{2 \lambda^{\prime}}{r}+\frac{1}{r^{2}}\right]-\frac{1}{r^{2}}$
$-8 \pi G p=\mathrm{e}^{-2 \lambda}\left[\nu^{\prime} \Phi^{\prime}-\frac{2 \Phi^{\prime}}{r}-\frac{2 v^{\prime}}{r}-\frac{1}{r^{2}}\right]+\frac{1}{r^{2}}$
$-8 \pi G p=\mathrm{e}^{-2 \lambda}\left[-\nu^{\prime \prime}-\nu^{\prime 2}-+v^{\prime} \lambda^{\prime}+\Phi^{\prime \prime}-\Phi^{\prime^{2}}-\nu^{\prime} \Phi^{\prime}+\lambda^{\prime} \Phi^{\prime}-\frac{\nu^{\prime}}{r}+\frac{\lambda^{\prime}}{r}-\frac{\Phi^{\prime}}{r}\right]$
$-8 \pi G p_{5}=\mathrm{e}^{-2 \lambda}\left[-v^{\prime \prime}-v^{\prime 2}+v \lambda-\frac{2 v^{\prime}}{r}+\frac{2 \lambda^{\prime}}{r}-\frac{1}{r^{2}}\right]+\frac{1}{r^{2}}$
Extra variables: $\mathrm{p}_{5^{\prime}} \Phi(\mathrm{r})$

$$
\boldsymbol{p}_{5}=1-\frac{2 M(r)}{r}+\frac{1}{r} \ln \left[1-\frac{2 M(r)}{r}\right]-2 \boldsymbol{p}
$$

