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➔  Standard matter by Standard Model
• Electromagnetic;
• Weak and
• Strong interactions

➔  Grand Unified Theory... 
• Gravity and QFT are not fitting into the 

same picture
• GR locally valid; curved space-time
• QFT globally valid; Minkowski

 Szilvia Karsai – Zimányi Winter School 2015 Budapest

1. Motivation for introducing extra dimensions
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➔  Standard matter by Standard Model
• Electromagnetic;
• Weak and
• Strong interactions

➔  Grand Unified Theory... 
• Gravity and QFT are not fitting into the 

same picture
• GR locally valid; curved space-time
• QFT globally valid; Minkowski

➔  Possible way:
• Geometrization of elementary 

forces 
• Introducing new dimensions

• Let's see the simplest case: d
c
=1!
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1. Motivation for introducing extra dimensions
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➔   Possible existence of extra dimensions at microscopical scales  at

  extreme energies
➔   Particles with enough energy are able to move in the extra direction
➔   Motion in the extra direction generates an extra mass term  (excited

  mass)

  
➔ Strangeness as a new degree of freedom:

  Connection between               and R
C
 radius:

          
   m: light (u, d) quark mass

          n: excitation number, n=1
            : e.g. heavy (s) quark mass



 

                  

    

m̄2
=( n

RC
)

2

+m2

m̄=mS

E5=√k 2
+( n

RC
)

2

+m2
=√k 2

+m̄2

m̄

   2. Extra space-dimension as a new degree of freedom
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C
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➔ Extra 5thD is compactified in an S1 circle with radius R
C

          → periodical boundary condition   quantization condition→

  

 k
5
: momentum in the 5th direction; x


: coordinate in the 5th direction; n  ℤ+

  
➔ Strangeness as a new degree of freedom:

  Connection between               and R
C
 radius:

          
   m: light (u, d) quark mass

          n: excitation number, n=1
            : e.g. heavy (s) quark mass



 

                  

    

m̄2
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RC
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+m2
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RC
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+m2
=√k 2

+m̄2
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   2. Extra space-dimension as a new degree of freedom
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n R
C

ψ(x5)≈e
ik 5⋅x5    and   ψ(x5+2π RC )∼ψ(x5)       →       k5=

n
RC
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Ω5=−2
V 4

β ∫
d4 k
(4 π)

4 [ln (1+e−β(√k 2+ m̄2−μ)) (+μ←→−μ) ]

m̄2
=(n/RC)

2
+m2                                        excited mass

∫
0

∞

d4 k=∫
0

∞

d3 k dk 5  →  
1
RC

∑
i=min(n)

max (n )

∫
0

∞

d3 k     discretization

V 5=2π RC V 4                                             1+4D volume

   3. Thermodynamics: potential for a 1+4D Fermion gas
➔ 1+3D two component Fermi-gas  → 1+4D one component Fermi-gas

➔ (n0,Λ)  n→ 0 and its extra dimensional excitation
➔ Excited state: new degree of freedom appearing in the momentum space 

of the particle on a given energy

➔ In equilibrium: μ = μ
n
 + μ

n_exc

  



 

                  

    

Ω5=∑n
Ω4 (m2

+
n2

RC
2 )=Ω4 (m̄)
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   3. Thermodynamics: potential for a 1+4D Fermion gas

➔ 1+3D two component Fermi-gas  → 1+4D onecomponent Fermi-gas

➔ (n0,Λ)  n→ 0 and its extra dimensional excitation:
➔ Excited state: new degree of freedom appearing in the momentum space 
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➔ In equilibrium: μ = μ
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 + μ
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Ω5=∑n
Ω4 (m2

+
n2

RC
)=Ω4 (m̄)
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For 1+4D EOS
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For 1+4D EOS

m̄2
=(n/RC)

2
+m2



Assumptions for generalization:

i.  1+(3+d
C
) dimensional space

 time: dimensions are space-like, 
 except first one: time-like 

ii.  GR is the same as in 1+3 D 
 'Equivalence Principle' is unchanged

iii. All causality postulates are
the same as in 1+3 D

iv. Extra space-like
 
dimensions are 

microscopical
v.  Complete Killing-symmetry

in the extra microscopical subspace

[G. G. Barnaföldi, P. Lévai, B. 
Lukács et al.  Astron. Nachr. 328, 
809 (2007)]

➔ Static, spherically 
symmetric compact 
object

➔ Ideal relativistic 
fluid with isotropy 

4. GR: Special solution in 1+4D spacetime

 Szilvia Karsai – Zimányi Winter School 2015 Budapest 5

gμν=[
g00 g01 0 0 g05

g01 g11 0 0 g15

0 0 g22 0 0

0 0 0 g22sin2
ϑ 0

g05 g15 0 0 g55

]



Assumptions for generalization:

i.  1+(3+d
C
) dimensional space

 time: dimensions are space-like, 
 except first one: time-like 

ii.  GR is the same as in 1+3 D 
 'Equivalence Principle' is unchanged

iii. All causality postulates are
the same as in 1+3 D

iv. Extra space-like
 
dimensions are 

microscopical
v.  Complete Killing-symmetry

in the extra microscopical subspace

[G. G. Barnaföldi, P. Lévai, B. 
Lukács et al.  Astron. Nachr. 328, 
809 (2007)]

➔ Spherical symmetry 
 O(3) symmetry→

➔ Static picture  →  g
μ0
=0 

and g
μν,0

=0 
➔ 4D gμν is X5 independent
➔ Killing 

transformations  →  
g

01
=0 and g

51
=0

➔ Static, spherically 
symmetric compact 
object

➔ Ideal relativistic 
fluid with isotropy 

Assumptions in case of a 
compact star:

4. GR: Special solution in 1+4D spacetime
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Assumptions for generalization:

i.  1+(3+d
C
) dimensional space

 time: dimensions are space-like, 
 except first one: time-like 

ii.  GR is the same as in 1+3 D 
 'Equivalence Principle' is unchanged

iii. All causality postulates are
the same as in 1+3 D

iv. Extra space-like
 
dimensions are 

microscopical
v.  Complete Killing-symmetry

in the extra microscopical subspace

[G. G. Barnaföldi, P. Lévai, B. 
Lukács et al.  Astron. Nachr. 328, 
809 (2007)]

gμν=diag (e2ν ,−e2 λ ,−r2,
−r 2sin2

ϑ ,e2Φ
)

Coordinates:
t = X0; r = X1; ϑ = X2; ϕ = X3;   = X5

Radial functions for the metric components: 
(r), (r), (r)

➔ Spherical symmetry 
 O(3) symmetry→

➔ Static picture  →  g
μ0
=0 

and g
μν,0

=0 
➔ 4D gμν is X5 independent
➔ Killing 

transformations  →  
g

01
=0 and g

51
=0

➔ Static, spherically 
symmetric compact 
object

➔ Ideal relativistic 
fluid with isotropy 

Assumptions in case of a 
compact star:

4. GR: Special solution in 1+4D spacetime
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➔ 'ddr= 0' special case:
  

  

 

    

d p(r)
d r

=−
[ p(r )+ϵ(r )][M (r )+4 π r3 p(r )]

r [r−2 M (r )]

 Szilvia Karsai – Zimányi Winter School 2015 Budapest

5. GR: TOV equation in 1+4D spacetime
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➔ 'ddr= 0' special case:
  

  

 

    

d p(r)
d r

=−
[ p(r )+ϵ(r )][M (r )+4 π r3 p(r )]

r [r−2 M (r )]
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5. TOV equation in 1+4D spacetime

k F>ℏ /RC

1+3D hyperon star non-interacting ~ 
1+4D R

C
= 0.33 fm → m

exc.
≅1113 MeV (m

Λ
)

1+3D hyperon star: 
n (u,d,d),  (u,d,s)   
(non-interacting) vs. 
1+4D fermion star:  with 

1
C
 extra dimension 

(non-interacting)

constraint: n=1
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➔ 'ddr= 0' special case:
  

  

 

    

d p(r)
d r

=−
[ p(r )+ϵ(r )][M (r )+4 π r3 p(r )]

r [r−2 M (r )]
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6. M – R relations with different R
C
 

1+3D hyperon star: 
n (u,d,d),  (u,d,s)   
(non-interacting) vs. 
1+4D fermion star:  with 

1
C
 extra dimension 

(non-interacting)

constraint: n=1

k F>ℏ /RC

● excitation with:
● larger the 

R
C
 → 

smaller the excitations 
to m

n

● similar solutions

Δmn∼
n
RC
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6. M – R relations with different R
C
 

1+3D hyperon star: 
n (u,d,d),  (u,d,s)   
(non-interacting) vs. 
1+4D fermion star:  with 

1
C
 extra dimension 

(non-interacting)

constraint: n=1

k F>ℏ /RC

● excitation with:
● larger the 

R
C
 → 

smaller the excitations 
to m

n

● similar solutions

Δmn∼
n
RC

larger R
C
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➔ But without interaction M
max

 too small! 
➔ On a larger scale compared to a realistic 1+3D interacting hyperon eos (n,Λ,Σ,Ξ) 

(Petrik et al. 2012) 
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7. Introducing a repulsive interaction for 1+3D 
 J. Zimanyi, B. Lukacs, P. 

Levai, J.P. Bondorf: 
„An Interpretable Family of 

Equation of State for
Dense Hadronic Matter”, 

Nucl.Phys. A484 (1988) 647
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➔ Introducing u(n) repulsive potential depending on density: u(n)~n 
➔ In a linear approximation: u(n)= ξn → results a contribution of the 

coupling constant in p, ε

p(μ)=p0[μ−u(n)]+ p int

ε int=∫
0

n

u (n)d n=∫
0

n

ξnd n=
1
2
ξn2

p int=nu (n)−∫
0

n

u(n)d n=nξn∫
0

n

ξnd n=ξn2
−

1
2
ξ n2

=
1
2
ξn2

ε(μ)=ε0[μ−u(n)]+ε int

n(μ)=u0[μ−u(n)]=u0[μ0]



8. Introducing a repulsive interaction for 1+3D 

➔ for the reference 1+3 D (n0, 0) 
eos   ξ with smoothly varying 
values from 10-4 <ξ<10-1

➔ increasing the magnitude of ξ → 
results increasing M

max
, R

max

 J. Zimanyi, B. Lukacs, P. 
Levai, J.P. Bondorf: 

„An Interpretable Family of 
Equation of State for

Dense Hadronic Matter”, 
Nucl.Phys. A484 (1988) 647
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coupling constant in p, ε
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stronger  ξ 

➔ Introducing u(n) repulsive potential depending on density: u(n)~n 
➔ In a linear approximation: u(n)= ξn → results a contribution of the 

coupling constant in p, ε
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➔ Introducing u(n) repulsive potential depending on density: u(n)~n 
➔ In a linear approximation: u(n)= ξn → results a contribution of the 

coupling constant in p, ε

➔ for the reference 1+3 D (n0, 0) 
eos   ξ with smoothly varying 
values from 10-4 <ξ<10-1

➔ increasing the magnitude of ξ 
→ results increasing M

max
, R

max

➔ Based on meauserements 
select the most reasonable 
one which nearly approaches 

➔ 2 M
sol

 (Demorest et al. 2010)  
➔ 7-11 km (Guillot et al. 2013) 

→ ξ=0.04!



9. Selecting ξ =0.04 eos → applying for 1+4D

➔ 1+4 D fermion star models: trying different R
C
 (from 0.03 fm to 1 fm) for ξ=0.04 case  

➔ compared to the non-interacting case → when interaction switched in: varying the size of 

the microsopical extra dimension (R
C
)  has less effect on M

max
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non-interacting 1+4D 
models

interacting 1+4D 
models
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9. Selecting ξ =0.04 eos → applying for 1+4D

Zoom in!

interacting 1+4D 
models

interacting 1+4D 
models



10. Probing different magnitudes of ξ

➔ greater the ξ ~ 
stronger the 
interaction

➔ varying the size of 
the microscopical 
extra dimension (R

C
) 

has less effect on 
M

max

➔ Appropriate setting 
of parameters can 
result realistic 
models between 
measured bounds of 
neutron star masses 
(1.4-2.1 M

sol
) and 

radii (7-11km)
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 ξ=0.0008 

 ξ=0.04 

 ξ=0.23 

➔ For the same set of R
C 

values 

R
C
=0.08 fm → m

exc.
=6644 MeV

R
C
=0.05 fm → m

exc.
=2640 MeV

R
C
=0.33 fm → m

exc.
=1113 MeV

R
C
=0.5 fm → m

exc.
=1019 MeV

R
C
=1 fm → m

exc.
=960 MeV
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➔ Fermion stars in 1+4D were analyzed:
➔ Assumption:

• Static, spherical Schwarzschild-like space-time; ideal fluid
• TOV-like eqs. with specific, but exact (stable) solution

➔ Solution of non-interacting: 
• overlaps with (n0, 0) 1+3D strange star models if R

C
 is set to m

s
 

• larger R
C
 results  decrease in star's mass→

• smaller  R
C
 generates a saturation in M

max
: mass limit 

• without interaction M
max

 is too small (under 1 M
sol

)

➔ Introducing a repulsive interaction for 1+3D and 1+4D eos:
• repulsive potential is proportional with the density, u(n)= ξn
• models can reach the realistic mass range (1.4 – 2 M

sol
) by setting ξ 

coupling constant in an appropriate range
• stronger the interaction (increasing ξ)  larger the star, M→

max
• strong interaction supresses the effect of size variation of the extraD 
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Summary
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)
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• strong interaction supresses the effect of size variation of the extraD 
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     Thank You for Your attention!



  Backup slides
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ε
centr

– R relations with different R
C
 

k F>ℏ /RC

● excitation with:
● larger the 

R
C
 → 

● smaller the excitations to m
n

● similar solutions

Δmn∼
n
RC

ε
centr

– M relations with different R
C
 

1+3D hyperon star: n0, 0 

  (non-interacting) vs. 
1+4D fermion star:  with 

1
C
 extra dimension 

(non-interacting)

constraint: n=1
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(a)  Thermodynamical potential for 1+4D Fermion gas

(b) Thermodynamical potential and its quantities

 

    

Thermodynamics for 1+4DThermodynamics for 1+4D

Ω5=−2
V 4

β ∫
d4 k
(4 π)4

[ln (1+e−β(√k 2+ m̄2−μ)) (+μ←→−μ) ]
m̄2

=(n/RC)
2
+m2     excited mass

∫ dk5  →  
1
RC

Σn     discretization

V 5=2π RC V 4         volume

Ω5=∑n
Ω4 (m2+

n2

RC
)=Ω4 (m̄)

p=−
1

2π RC

∂Ω5

∂V
         p5=−

1
2πV

Ω5

∂RC

         ϵ=
U
V 4

 Szilvia Karsai – NewCompStar School 2015 Bucharest
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(a)  Energy-momentum tensor for anisotrop liquid:

  Liquid is isotrop for 3 dimension:

  BUT pressure    in the 5th direction is anisotrop,
  with  energy-density:
 

(b)  Let's construct the R
μν

 Ricci tensor and R Ricci scalar: 

    

Tμ ν :=ϵuμ uν−p (gμν−uμuν+vμ v ν)−p5 vμ vν

T 1
1
=T 2

2
=T 3

3
=p

T5
5
= p5

Tμ ν=diag(ϵe2ν , pe2λ , p r 2 , pr2 sin2ϑ , p5 e2Φ)

R :=Ri
i
=R1

1
+R2

2
+R3

3
+R4

4
+R5

5

[B. Lukács, T. Pacher:  
KFKI-1985-74, 
Budapest, Hungary]

5. GR: Energy-momentum tensor for 1+4D matter
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➔ according to new dimensions 10  15 equations BUT because of →
symmetries: 5 components of the Einstein equation:    

• Extra variables: p
5
, r

Rμν−
1
2

R gμ ν=−8πGTμ ν

−8 πG ϵ=e−2λ [Φ ' '+Φ '2
−λ ' Φ '+

2Φ '
r

−
2λ '
r

+
1

r2 ]− 1

r2

−8 πG p=e−2λ [ν ' Φ '−
2Φ '
r

−
2 ν '
r

−
1

r 2 ]+ 1

r 2

−8 πG p=e−2λ [−ν ' '−ν ' 2
−+ν 'λ '+Φ ' '−Φ '2

−ν 'Φ '+λ 'Φ '−
ν '
r
+
λ '
r
−
Φ '
r ]

−8 πG p5=e−2λ [−ν ' '−ν '2+ν λ−
2ν '
r

+
2λ '
r

−
1
r2 ]+ 1

r 2
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6. GR: Einstein equation in 1+4D spacetime

p5=1−
2 M (r )

r
+

1
r

ln [1−2 M (r )
r ]−2 p
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