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Outline

I Experimental observation: azimuthal correlations
I CGC and glasma
I How the CGC picture leads to azimuthal correlations

I Dilute-dense case: Wilson line correlators
I Dense-dense case: Classical Yang-Mills

I Relating different recent approaches



2/20

Azimuthal correlations in small systems

Experimental observation
I AA, high Nch pA & pp
I Azimuthal anisotropy in

particle production
(especially ∼ cos 2ϕ)

I LHC and also RHIC
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Analyzed as yield/trigger or as vn:
ATLAS, Phys. Rev. C 90 (2014) 4, 044906
[arXiv:1409.1792 [hep-ex]].

What is the origin of the effect?
I Collective flow as in AA?
I Initial state gluon correlations?



3/20

Azimuthal correlations from flow
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I Interactions/collectivity

+ Temperature/pressure gradients

=⇒ Anisotropic force, acceleration
anisotropy in momentum

Large system:
=⇒ details of MC Glauber matter little
=⇒ initial geometry under control
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Works well in AA Niemi et al But also in small systems? Bozek, Broniowski
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Flow in small systems

Want to do MC Glauber for pA & pp
How is the energy distributed?

(a) (b) (c)

Eccentricities very model-dependent

“Hydro prediction for flow” in small systems:
large initial state theory uncertainty.

Hydro calculations for vn in pA
what about pp at similar Nch?
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Long range in rapidity: early time

I Long range rapidity correlations:
early time

I Analogous to CMB

I vn= multiparticle correlation
( usually long range in rapidity)

I Some particles determine
reaction plane

I Other particles correlated with
this plane

I Geometry is the ultimate
infinite-range correlation

I All rapidities sensitive to ⊥
geometry

I Hydro translates x-space
correlations into p-space

T of universe very homogenous:
early time causal connection

Initial state QCD long range effects:
non-geometry correlations directly in momentum space
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Gluon saturation, Glass and Glasma

Small x : the hadron/nucleus wavefunction
is characterized by saturation scale
Qs � ΛQCD.

H
pT ∼ Qs: strong fields Aµ ∼ 1/g

I occupation numbers ∼ 1/αs

I classical field approximation.
I small αs, but nonperturbative
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JIMWLK: y-dependence of Wy [ρ]
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Wilson line

Classical color field described as Wilson line
In practice degree of freedom is not ρ but Wilson line:

V (xT ) = P exp
{

ig
∫

dx−A+
cov(xT , x

−)

}
∈ SU(3)

Color charge ρ : ∇T
2A+

cov(xT , x
−) = −gρ(xT , x

−)

Physical interpretation:
Eikonal propagation of parton through target color field

Qs is characteristic momentum/distance scale

Precise definition used here:

C(xT ) =
1

Nc

〈
Tr V †(0T )V (xT )

〉
= e−

1
2

⇐⇒ xT
2 =

2
Q2

s
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JIMWLK evolution

Classical color field described as Wilson line

V (xT ) = P exp
{

ig
∫

dx−A+(xT , x
−)

}
∈ SU(3)

I Energy dependent probability distribution Wy [V ] (y ∼ ln
√

s)

I Energy/rapidity dependence of Wy [V ] given by JIMWLK
renormalization group equation

∂yWy [V (xT )] = HWy [V (xT )]

I Then get all expectation values
〈
V · · ·V †

〉
H ≡ 1

2
αs

∫
xT yT zT

δ

δA+
c (yT )

eba
T (xT , zT ) · eca

T (yT , zT )
δ

δA+
b (xT )

,

eba
T (xT , zT ) =

1√
4π3

xT − zT

(xT − zT )2

(
1− U†(xT )U(zT )

)ba

(Here U is adjoint reps of V )

In practice solve as a Monte Carlo Langevin process
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Domains in the target color field
Initial state CGC correlations in dilute-dense limit

1/Qs

I ∼collinear high-x q/g
I Momentum transfer from target E-field
I Domains of size ∼ 1/Qs

I Several particle see same domain:
multiparticle azimuthal correlations.

I ∼ Q2
s S⊥ domains (S⊥= size of interaction area, πR2

A, πR2
p)

I ∼ Nc
2 colors

Correlation 1
Nc2Q2

s S⊥
=⇒ relatively stronger in small systems
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Explicit setup for dilute-dense
TL Phys. Lett. B 744 (2015) 315 [arXiv:1501.05505 [hep-ph]]

I Passage of probe particle through color field: eikonal Wilson line in
target color field

V (xT ) = P exp
{

ig
∫

dx−A+
cov(xT , x

−)

}
I Localize quarks in Gaussian wave packet in probe:

dN

d2pT

∝
∫

xT ,yT

e−ipT ·(xT−yT )e
−(xT−bT )

2

2B e
−(yT−bT )

2

2B
1

Nc
Tr V †xT

VyT .

I Two particle correlation

dN

d2pT d2qT

=

∫
. . .

〈
1

Nc
Tr V †xT

VyT

1
Nc

Tr V †uT
VvT

〉
=⇒ vn{2}

I Need distribution of Wilson lines V for Monte Carlo: MV or JIMWLK
(in Langevin method)
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Anisotropy coefficients from JIMWLK and MV
TL Phys. Lett. B 744 (2015) 315 [arXiv:1501.05505 [hep-ph]]

I pT -structure like data,
but peak at lower pT

I Depends on probe size B
I Stronger for larger x (MV)

I v4 peaks at higher pT

I Odd vn only for quark probe

v2

◦ Thick line: correlate pT vs all

◦ Thin line: pT vs pT

Here target homogenous & isotropic
=⇒ vn purely from field fluctuations
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Anisotropy coefficients from JIMWLK and MV
TL Phys. Lett. B 744 (2015) 315 [arXiv:1501.05505 [hep-ph]]

I pT -structure like data,
but peak at lower pT

I Depends on probe size B
I Stronger for larger x (MV)
I v4 peaks at higher pT

I Odd vn only for quark probe

v3
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What about the glasma, dense-dense case?

The same azimuthal correlation was seen already many years ago:
T.L., Srednyak, Venugopalan, 2009

. . . it was just not Fourier-decomposed into vn’s.

κ2(pT ,qT ) =

# of independent regions︷ ︸︸ ︷
S⊥Q2

s


〈

d2N2
dyp d2pT dyq d2qT

〉
〈

dN
dyp d2pT

〉〈
dN

dyqd2qT

〉 − 1
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Newer developments Schenke, Schlichting, Venugopalan 2015 :
Finite nucleus, decompose in vn’s . . .
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How is the dense-dense calculation performed?

Classical Yang-Mills

η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.

Change to LC gauge:

Ai
(1,2) =

i
g

U(1,2)(xT )∂iU
†
(1,2)(xT )

U(xT ) is the same Wilson line

At

τ = 0:

Ai
∣∣∣
τ=0

= Ai
(1) + Ai

(2)

Aη|τ=0 =
ig
2

[Ai
(1),A

i
(2)]

τ > 0 Solve numerically Classical Yang-Mills CYM equations.
This is the glasma field =⇒ Then average over initial Wilson lines.

Fix gauge, Fourier-decompose: gluon spectrum
I Gluons with pT ∼ Qs — strings of size R ∼ 1/Qs

I Same domain structure is built into the calculation



13/20

How is the dense-dense calculation performed?

Classical Yang-Mills

η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.

Change to LC gauge:

Ai
(1,2) =

i
g

U(1,2)(xT )∂iU
†
(1,2)(xT )

U(xT ) is the same Wilson line

At τ = 0:

τ = 0:

Ai
∣∣∣
τ=0

= Ai
(1) + Ai

(2)

Aη|τ=0 =
ig
2

[Ai
(1),A

i
(2)]

τ > 0 Solve numerically Classical Yang-Mills CYM equations.
This is the glasma field =⇒ Then average over initial Wilson lines.

Fix gauge, Fourier-decompose: gluon spectrum
I Gluons with pT ∼ Qs — strings of size R ∼ 1/Qs

I Same domain structure is built into the calculation



13/20

How is the dense-dense calculation performed?

Classical Yang-Mills

η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.

Change to LC gauge:

Ai
(1,2) =

i
g

U(1,2)(xT )∂iU
†
(1,2)(xT )

U(xT ) is the same Wilson line

At τ = 0:

Ai
∣∣∣
τ=0

= Ai
(1) + Ai

(2)

Aη|τ=0 =
ig
2

[Ai
(1),A

i
(2)]

τ > 0 Solve numerically Classical Yang-Mills CYM equations.
This is the glasma field =⇒ Then average over initial Wilson lines.

Fix gauge, Fourier-decompose: gluon spectrum
I Gluons with pT ∼ Qs — strings of size R ∼ 1/Qs

I Same domain structure is built into the calculation



14/20

Recent calculations in the literature

Azimuthal correlations
analyzed in terms of the

I “Glasma graph” ridge
correlation

I E-field domain model
I Dilute dense with full

nonlinear JIMWLK
I Dense-dense with

Classical Yang-Mills
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Dusling, Venugopalan, Phys. Rev. D 87 (2013) 9, 094034
[arXiv:1302.7018 [hep-ph]].

Physics of color field domains same; approximations different



14/20

Recent calculations in the literature

Azimuthal correlations
analyzed in terms of the

I “Glasma graph” ridge
correlation

I E-field domain model

I Dilute dense with full
nonlinear JIMWLK

I Dense-dense with
Classical Yang-Mills

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  1  2  3  4  5  6

v
2

pT/Qs

220 < Ntrk
offline

 < 260

p+Pb - 5.02 TeV 

Qs = 1.3 GeV 

  v2{2, |∆η| > 2} CMS

v2{4} CMS

Dipole, A = 0.07

Dumitru, Giannini, Nucl. Phys. A 933 (2014) 212
[arXiv:1406.5781 [hep-ph]].

Physics of color field domains same; approximations different



14/20

Recent calculations in the literature

Azimuthal correlations
analyzed in terms of the

I “Glasma graph” ridge
correlation

I E-field domain model
I Dilute dense with full

nonlinear JIMWLK

I Dense-dense with
Classical Yang-Mills

0 1 2 3 4 5
p

T
 / Q

s
0

0.
1

0.
2

v 2

JIMWLK Q
s
√Β = 1.8

Q
s
√Β = 2.6

Q
s
√Β = 3.9

TL, Phys. Lett. B 744 (2015) 315
[arXiv:1501.05505 [hep-ph]].

Physics of color field domains same; approximations different



14/20

Recent calculations in the literature

Azimuthal correlations
analyzed in terms of the

I “Glasma graph” ridge
correlation

I E-field domain model
I Dilute dense with full

nonlinear JIMWLK
I Dense-dense with

Classical Yang-Mills

 0

 0.05

 0.1

 0.15

 0.2

 0  1  2  3  4  5  6  7  8

v
2

pT [GeV]

Gluons  τ=0.2 fm/c

ATLAS v2(2PC) 110 < Nch
rec < 140

CMS v2{4} 120 < Ntrk
off < 150

Gluons  τ=0.0 fm/c   v2(2PC)

v2(2PC)

v2(EP)

Schenke, Schlichting, Venugopalan,
Phys. Lett. B 747 (2015) 76

[arXiv:1502.01331 [hep-ph]].

Physics of color field domains same; approximations different



14/20

Recent calculations in the literature

Azimuthal correlations
analyzed in terms of the

I “Glasma graph” ridge
correlation

I E-field domain model
I Dilute dense with full

nonlinear JIMWLK
I Dense-dense with

Classical Yang-Mills

  0.00

  0.04

  0.08

  0.12
Ntrk

offline < 35
1 < pT < 2 GeV

35 < Ntrk
offline < 90 90 < Ntrk

offline < 110 110 < Ntrk
offline < 150 Ntrk

offline > 150

  0.00

  0.02

  0.04

  0.06 2 < pT < 3 GeV

  0.00

  0.02

  0.04

  0.06 3 < pT < 4 GeV

 0.000

 0.005

 0.010

 0.015

 0 1 2 3 

∆φ

4 < pT < 5 GeV

 0 1 2 3 

∆φ
 0 1 2 3 

∆φ
 0 1 2 3 

∆φ
 0 1 2 3 

∆φ

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  1  2  3  4  5  6

v
2

pT/Qs

220 < Ntrk
offline

 < 260

p+Pb - 5.02 TeV 

Qs = 1.3 GeV 

  v2{2, |∆η| > 2} CMS

v2{4} CMS

Dipole, A = 0.07

0 1 2 3 4 5
p

T
 / Q

s

0
0.

1
0.

2
v 2

JIMWLK Q
s
√Β = 1.8

Q
s
√Β = 2.6

Q
s
√Β = 3.9

 0

 0.05

 0.1

 0.15

 0.2

 0  1  2  3  4  5  6  7  8

v
2

pT [GeV]

Gluons  τ=0.2 fm/c

ATLAS v2(2PC) 110 < Nch
rec < 140

CMS v2{4} 120 < Ntrk
off < 150

Gluons  τ=0.0 fm/c   v2(2PC)

v2(2PC)

v2(EP)

Physics of color field domains same; approximations different
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Difference between approximations

For V (xT ) = P exp
{

ig
∫

dx−
ρ(xT , x−)

∇T
2

}
,

need
〈

Tr V †(xT )V (yT ) Tr V †(uT )V (vT )
〉

Different approximations used
I JIMWLK: Langevin equation for V (xT ).

Close to Gaussian in ρ, but nonlinear (“nonlinear Gaussian”)

I “Glasma graph”: linearize in ρ, Gaussian ρ
I “E-field domain model”, small dipole limit

1
Nc

V †(bT + rT/2)V (bT − rT/2) ≈ 1− r i r j

4Nc
Ea

i (bT )Ea
j (bT )

+ non-Gaussian 4-point correlation with extra parameter A
I CYM: nonlinear with Gaussian ρ for both nuclei

+ final state evolution
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Comparing approximations for Wilson line correlator
T. L., B. Schenke, S. Schlichting and R. Venugopalan, arXiv:1509.03499 [hep-ph]

Compare full MV or JIMWLK vn{2} to
I Nonlinear Gaussian (Gaussian ρ, do not linearize) :

accurate within 10%
I “Glasma graph” (Gaussian + linearized)

differs by factor 2 at most
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Remarkable consistency between approximations
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Effect of reference pT

MV JIMWLK
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I MV
I Correlation more localized in pT than experimental data

(Hadronization will change this, but how much?)
I GG decorrelates paricularly fast

I JIMWLK:
I Little difference between approximations
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For the future: rapidity structure

I All of these neglect decorrelation in rapidity due to gluon
emissions, parametrically true only for ∆y . 1/αs

I Rapidity decorrelation formulated
Iancu, Triantafyllopoulos, JHEP 1311 (2013) 067 [arXiv:1307.1559 [hep-ph]]

but not implemented
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Color field domain model
A. Dumitru and A. V. Giannini, Nucl. Phys. A 933 (2014) 212 [arXiv:1406.5781 [hep-ph]]

〈
E jE j

〉
∼
[
δij(1−A) + 2Aâi âj

]
Then average over color field direction â.
Result: non-Gaussianity with unknown parameter A:

〈EEEE〉 =
(Gaussian︷︸︸︷

3 +

from â︷︸︸︷
A2 ) 〈EE〉 〈EE〉

What does A represent?
1. Effect of nonlinearities?

“Glasma graph” linearization is factor ∼2 effect.

2. Nongaussianities in JIMWLK?
∼10% effect, but interesting for theorist.

3. New structure beyond conventional CGC (MV+JIMWLK)?
Origin? Timescales? Nc-counting?
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Conclusions

I Strong multiparticle azimuthal correlations seen even in small
systems

I Interpretation as initial vs. final state collectivity still open
I Initial gluon field can be a significant source of correlation

I Especially for small systems
I Hadronization, pT -dependence?
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