Dissipative phase space correction (δf) models vs nonlinear kinetic theory

Denes Molnar, Purdue University

15th Zimányi School, Dec 7-11, Wigner RCP, Budapest
with Mridula Damodaran, in preparation ...

Outline

I. The problem of dissipative (δf) corrections
II. A couple δf models
III. Test them against full kinetic theory
IV. Some lessons and refinements (positivity, memory)
V. Conclusions and future steps

Hydrodynamics

conservation laws:

$$
\partial_{\mu} T^{\mu \nu}(x)=0 \quad, \quad \partial_{\mu} N_{B}^{\mu}(x)=0
$$

additional EoM for dissipative fluids:

$$
\begin{aligned}
& T^{\mu \nu}(x)=T_{\text {ideal }}^{\mu \nu}(x)+\delta T^{\mu \nu}(x) \\
& N^{\mu}(x)=N_{\text {ideal }}^{\mu}(x)+\delta N^{\mu}(x) \\
& \delta \dot{T}^{\mu \nu}=A^{\mu \nu}\left(\left\{T^{\alpha \beta}, N^{\gamma}\right\}\right), \quad \delta \dot{N}^{\mu}=B^{\mu}\left(\left\{T^{\alpha \beta}, N^{\gamma}\right\}\right) \\
& \quad \text { (e.g. Israel-Stewart '79) }
\end{aligned}
$$

utilizes equation of state $\left(p\left(e, n_{B}\right), T\left(e, n_{B}\right)\right)$, transport coeffs $\left(\eta, \zeta, \kappa_{B}\right)$, relaxation times ($\tau_{\eta}, \tau_{\zeta}, \tau_{\kappa}$)
some issues: - initial conditions needed \leftrightarrow thermalization

- how to "turn" hydro off at late times
- very small systems - quantum effects? DM, Wang, Greene,
- is it really hydro? He et al, arXiv:1502.05572

Hydro \rightarrow particles

hydro gives N^{μ} \& $T^{\mu \nu}$, but experiments measure particles

$$
\begin{aligned}
& N^{\mu}(x) \equiv \sum_{i} \int \frac{d^{3} p}{E} p^{\mu} f_{i}(p, x) \\
& T^{\mu \nu}(x) \equiv \sum_{i} \int \frac{d^{3} p}{E} p^{\mu} p^{\nu} f_{i}(p, x)
\end{aligned}
$$

- in local equilibrium (ideal hydro) - "one to one"

$$
T_{L R}^{\mu \nu}(x)=\operatorname{diag}(e, p, p, p) \quad \Leftrightarrow \quad f_{e q, i}(x, p)=\frac{g_{i}}{(2 \pi)^{3}} \frac{1}{e^{\left(p^{\mu} u_{\mu}-\mu_{i}\right) / T}+a}
$$

- near local equilibrium (viscous hydro) - "few to many"

$$
\begin{aligned}
& T^{\mu \nu}(x)=T_{i d e a l}^{\mu \nu}(x)+\delta T^{\mu \nu}(x) \\
& N^{\mu}(x)=N_{\text {ideal }(x)}^{\mu}+\delta N^{\mu}(x)
\end{aligned} \Leftarrow f_{i}(x, p)=f_{\text {eq }, i}(x, p)+\delta f_{i}(x, p)
$$

\Rightarrow question of δf (even for single-species systems!)

δf models, for shear

$$
\delta T^{\mu \nu}=\pi^{\mu \nu} \quad\left(\pi^{\mu \nu} u_{\nu}=0, u_{\nu} \pi^{\mu \nu}=0, \pi_{\mu}^{\mu}=0\right)
$$

purely spatial (in LR), symmetric, traceless
Navier-Stokes: $\pi^{\mu \nu}=\eta \underbrace{\left[\nabla^{\mu} u^{\nu}+\nabla^{\nu} u^{\mu}-\frac{2}{3} \Delta^{\mu \nu}(\partial \cdot u)\right]}_{2 \sigma^{\mu \nu}}$
matter for: - hadron distributions (fluid \rightarrow hadron gas conversion)

- E\&M rates from QGP
- bound states in plasma ...
hadron gas ≈ 50 species
DM \& Wolff, arXiv:1404.7850
(0.2
massless quark-gluon gas
Dusling, Moore, Teaney, PRC ('09)

Grad / Israel-Stewart ansatz

From "14-moment" expansion in kinetic theory

$$
\delta f^{G r a d}(x, \vec{p})=\frac{1}{2 T(x)^{2}[e(x)+p(x)]} p^{\mu} p^{\nu} \pi_{\mu \nu}(x) f_{e q}(x, \vec{p})
$$

Popular for hydro because for multicomponent system the same form

$$
\delta f_{i}=\frac{1}{2 T^{2}(e+p)} p^{\mu} p^{\nu} \pi_{\mu \nu} f_{e q, i}
$$

only needs knowledge of the full $T^{\mu \nu}$ and automatically yields $\sum_{i} T_{i}^{\mu \nu}=T^{\mu \nu}$. Also used by Israel \& Stewart (IS) to derive causal viscous hydrodynamics.

Can generalize to any power - "IS with $p^{\alpha "}$:

$$
\delta f=\frac{C(\alpha)}{2 T^{2}(e+p)}\left(\frac{p \cdot u}{T}\right)^{\alpha-2} p^{\mu} p^{\nu} \pi_{\mu \nu} f_{e q}
$$

Weakness: negative f at sufficiently high momenta ($\pi^{\mu \nu}$ not pos definite)

Covariant transport

(on-shell) phase-space density $f(x, \vec{p}) \equiv \frac{d N(\vec{x}, \overrightarrow{,}, t)}{d^{3} x d^{3} p}$
transport equation:

$$
p^{\mu} \partial_{\mu} f_{i}(x, p)=C_{2 \rightarrow 2}^{i}\left[\left\{f_{j}\right\}\right](x, p)+C_{2 \leftrightarrow 3}^{i}\left[\left\{f_{j}\right\}\right](x, p)+\cdots
$$

with, e.g.,
$C_{2 \rightarrow 2}^{i}=\frac{1}{2} \sum_{j k l} \int_{234}\left(f_{3}^{k} f_{4}^{l}-f_{1}^{i} f_{2}^{j}\right) W_{12 \rightarrow 34}^{i j \rightarrow k l} \quad\left(\int_{j} \equiv \int \frac{d^{3} p_{j}}{2 E_{j}}, \quad f_{a}^{k} \equiv f^{k}\left(x, p_{a}\right)\right)$
thermalizes (in box), fully causal and stable
near hydro limit transport coeffs \& relaxation times:

$$
\eta \approx 1.2 T / \sigma, \quad \tau_{\pi} \approx 1.2 \lambda_{t r}
$$

Linearized kinetic theory

late-time, near-equilibrium behavior universal, and can be studied via de Groot, et al ('70s)... Arnold, Moore, Yaffe, JHEP 0011... Denicol et al PRD85 ('12)...

$$
p \cdot \nabla f_{e q}=C\left[f_{e q}, \delta f\right] \quad\left(\delta f=f-f_{e q}\right)
$$

integral eqn. relates δf to gradients in the system (one way to derive transport coeffs)

For shear, solution is of the form

$$
\delta f(x, \vec{p})=\chi\left(\frac{p \cdot u}{T}\right) \hat{p}_{\mu} \hat{p}_{\nu} \frac{\sigma^{\mu \nu}}{T} f_{e q}
$$

\Rightarrow nontrivial momentum dependence, but negativity problem remains theory preference for $\chi \sim p^{1.5}$

Relaxation time approx (RTA)

To simplify Boltzmann, try

$$
p \cdot \partial f(x, \vec{p})=(p \cdot u) \frac{f_{e q}(x, \vec{p})-f(x, \vec{p})}{\tau_{R E L}}
$$

Conserved particle number, energy \& momentum, if $f_{e q}(f)$ chosen well. $\tau_{R E L}$ must be matched to some dynamical aspect, e.g., the viscosity.

In late-time near-equilibrium regime $\left(\partial_{t} \rightarrow 0\right): \quad p \cdot \nabla f_{\text {eq }}=-\tau_{R E L}(p \cdot u) \delta f$
so with shear: $\delta f=\frac{\tau_{R E L}}{2(p \cdot u) T} p_{\mu} p_{\nu} \sigma^{\mu \nu} f_{e q}=\frac{\tau_{R E L}}{2} \frac{T}{(p \cdot u)} \frac{p_{\mu} p_{\nu}}{T^{2}} \frac{\pi^{\mu \nu}}{\eta} f_{e q}$
and from $\int \frac{d^{3} p}{E} p^{\mu} p^{\nu} \delta f=\pi^{\mu \nu} \quad \Rightarrow \quad \tau_{R E L}=\frac{5 \eta}{4 n T}$
Notice that $\delta f / f_{e q} \sim p^{1}$ (linear) in this case.

SR ansatz

Strickland \& Romatschke, PRD 71 ('05):

$$
f\left(p_{T}, p_{z}\right)=N e^{-\sqrt{E^{2}+p_{z}^{2}} / \Lambda}=N \exp \left[-\frac{p_{T}}{\Lambda} \sqrt{\operatorname{ch}^{2} \xi+a \operatorname{sh}^{2} \xi}\right] \quad(\xi \equiv \eta-y)
$$

- N, Λ, a fixed by $N^{0}, T^{00}, T^{z z}$
- matches free streaming solution in 0+1D $\left[a=\left(\tau / \tau_{0}\right)^{2}\right]$
more generally Tinti \& Florkowski, PRC89 ('14)

$$
f=N \exp \left[-\frac{1}{\Lambda} \sqrt{p^{\mu} \Xi_{\mu \nu} p^{\nu}}\right]
$$

- always positive, also: linear for small momenta

GOAL: test these models against full, nonlinear kinetic theory.
i) obtain transport solutions with isotropic $2 \rightarrow 2$ interactions (MPC/Grid transport code)
ii) from f, determine $T^{\mu \nu}$
iii) study how well δf models reconstruct f from the $T^{\mu \nu}$ alone

MPC/Grid

similar to BAMPS - not a cascade

- $2 \rightarrow 2$ and $3 \leftrightarrow 2$ with test particles on a spatial grid pair/triplet collisions with probability

$$
P_{2 \rightarrow X}=\frac{\sigma_{2 \rightarrow X} v_{r e l} \Delta t}{V_{\text {cell }}}, \quad P_{3 \rightarrow Y}=\frac{K_{3 \rightarrow Y} \Delta t}{V_{\text {cell }}^{2}}
$$

5 numerical knobs: cell sizes $\left(d_{x}, d_{y}, d_{z} / d_{\eta}\right)$, timestep Δt, subdivision ℓ still action at distance \rightarrow violates locality, causality, covariance
\Rightarrow but more flexible than earlier MPC/Cascade

- we also have a version for parallel computers (MPI)

massless system, 0+1D Bjorken expansion (transversely uniform)

$$
\Rightarrow f\left(p_{T}, \xi \equiv \eta-y, \tau\right)
$$

$$
u_{B J}^{\mu}=(\operatorname{ch} \eta, 0,0, \operatorname{sh} \eta), \quad(p \cdot u)=p_{T} \operatorname{ch} \xi
$$

$$
T_{i d e a l, L R}^{\mu \nu}=p(\tau) \operatorname{diag}(3,1,1,1), \quad \pi_{L R}^{\mu \nu}=\pi_{L}(\tau) \operatorname{diag}\left(0,-\frac{1}{2},-\frac{1}{2}, 1\right)
$$

dynamics governed by: $K(\tau) \equiv \frac{\tau_{\text {exp }}}{\tau_{s c}}=\frac{(\partial \cdot u)}{\lambda_{t r, M F P}}=\frac{2}{3} \tau n \sigma_{T O T}=\frac{2}{3} \tau_{0} n_{0} \sigma_{T O T}$ for $\boldsymbol{\eta} / \boldsymbol{s} \approx$ const, $\sigma_{T O T} \sim \tau^{2 / 3} \Rightarrow K(\tau) \propto \tau^{2 / 3} \quad$ DM \& Huovinen, PRC79 ('09) for $\sigma=$ const, $K(\tau)=$ const
with $\eta=1.26757 . . \frac{T}{\sigma_{T O T}}$, we have $K_{0} \approx 0.2 T_{0} \tau_{0} \frac{s}{\eta}\left(\tau_{0}\right)$ (used $s=4 n$) and typically $\tau_{0} T_{0} \sim 1$, so $\eta / s=1 /(4 \pi)$ corresponds to $K_{0} \sim 2$
$\boldsymbol{T}_{\boldsymbol{e f f} \boldsymbol{f}} \mathrm{vs} \boldsymbol{\tau}$ - cooling due to $p d V$ work Gyulassy, Pang, Zhang, NPA626 ('97)

viscous pressure correction vs $\boldsymbol{\tau}$ - just like DM \& Huovinen, PRC79 ('09)

with $\eta / s \approx$ const it first leaves equilibrium then returns

First look at $f\left(p_{T}, \xi\right)$ with SR and $\operatorname{Grad}(\mathrm{IS}) \rightarrow$ plot $\frac{f_{\text {rec }}}{f_{\text {trans }}}$

Generic features illustrated for $\eta / s \sim 1 /(4 \pi)$

$$
\left[K_{0}=2, K(\tau) \propto \tau^{2 / 3}\right]
$$

Color coding:

$$
\begin{aligned}
& +100 \% \\
& +50 \% \\
& +10 \% \\
& \pm 1 \% \\
& -10 \% \\
& -50 \% \\
& -100 \% \\
& <0
\end{aligned}
$$

$$
\frac{\tau}{\tau_{0}}=1.02, \quad K=2\left(\frac{\tau}{\tau_{0}}\right)^{2 / 3} \quad\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.52, \frac{\pi_{L}}{p}=-0.02\right)
$$

SR ansatz

Grad (IS)

$$
\frac{\tau}{\tau_{0}}=1.2, \quad K=2\left(\frac{\tau}{\tau_{0}}\right)^{2 / 3} \quad\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.47, \frac{\pi_{L}}{p}=-0.15\right)
$$

SR ansatz

Grad (IS)

$$
\frac{\tau}{\tau_{0}}=1.4, \quad K=2\left(\frac{\tau}{\tau_{0}}\right)^{2 / 3} \quad\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.42, \frac{\pi_{L}}{p}=-0.23\right)
$$

SR ansatz

$$
\frac{\tau}{\tau_{0}}=1.6, \quad K=2\left(\frac{\tau}{\tau_{0}}\right)^{2 / 3} \quad\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.38, \frac{\pi_{L}}{p}=-0.27\right)
$$

SR ansatz

$$
\frac{\tau}{\tau_{0}}=1.8, \quad K=2\left(\frac{\tau}{\tau_{0}}\right)^{2 / 3} \quad\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.36, \frac{\pi_{L}}{p}=-0.28\right)
$$

SR ansatz

$$
\frac{\tau}{\tau_{0}}=2, \quad K=2\left(\frac{\tau}{\tau_{0}}\right)^{2 / 3} \quad\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.33, \frac{\pi_{L}}{p}=-0.29\right)
$$

SR ansatz

Grad (IS)

$$
\frac{\tau}{\tau_{0}}=3, \quad K=2\left(\frac{\tau}{\tau_{0}}\right)^{2 / 3} \quad\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.25, \frac{\pi_{L}}{p}=-0.26\right)
$$

SR ansatz

$$
\frac{\tau}{\tau_{0}}=4, \quad K=2\left(\frac{\tau}{\tau_{0}}\right)^{2 / 3} \quad\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.21, \frac{\pi_{L}}{p}=-0.22\right)
$$

SR ansatz

$$
\frac{\tau}{\tau_{0}}=6, \quad K=2\left(\frac{\tau}{\tau_{0}}\right)^{2 / 3} \quad\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.16, \frac{\pi_{L}}{p}=-0.17\right)
$$

SR ansatz

$$
\frac{\tau}{\tau_{0}}=8, \quad K=2\left(\frac{\tau}{\tau_{0}}\right)^{2 / 3} \quad\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.13, \frac{\pi_{L}}{p}=-0.14\right)
$$

SR ansatz

$$
\frac{\tau}{\tau_{0}}=10, \quad K=2\left(\frac{\tau}{\tau_{0}}\right)^{2 / 3} \quad\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.11, \frac{\pi_{L}}{p}=-0.12\right)
$$

SR ansatz
Grad (IS)

$$
\frac{\tau}{\tau_{0}}=12, \quad K=2\left(\frac{\tau}{\tau_{0}}\right)^{2 / 3} \quad\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.10, \frac{\pi_{L}}{p}=-0.11\right)
$$

SR ansatz

$$
\frac{\tau}{\tau_{0}}=14, \quad K=2\left(\frac{\tau}{\tau_{0}}\right)^{2 / 3} \quad\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.09, \frac{\pi_{L}}{p}=-0.10\right)
$$

SR ansatz

Grad (IS)

$$
\frac{\tau}{\tau_{0}}=16, \quad K=2\left(\frac{\tau}{\tau_{0}}\right)^{2 / 3} \quad\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.08, \frac{\pi_{L}}{p}=-0.09\right)
$$

SR ansatz

Grad (IS)

$$
\frac{\tau}{\tau_{0}}=18, \quad K=2\left(\frac{\tau}{\tau_{0}}\right)^{2 / 3} \quad\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.08, \frac{\pi_{L}}{p}=-0.08\right)
$$

SR ansatz

$$
\frac{\tau}{\tau_{0}}=20, \quad K=2\left(\frac{\tau}{\tau_{0}}\right)^{2 / 3} \quad\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.07, \frac{\pi_{L}}{p}=-0.08\right)
$$

SR ansatz

$$
\Rightarrow
$$

At early times or high ξ, SR looks better
At high pT and small ξ, Grad looks better.

Now compare four models:
a) SR, \quad b) IS/Grad, c) IS with $p^{1.5}$, d) IS with p^{1} (RTA)
study viscosity dependence $\frac{\eta}{s} \sim 0.03-0.2 \quad\left[K_{0}=1,2,6.49\right]$
plot near three characteristic times:
i) early walk-away: $1.2 \tau_{0}$
ii) maximum departure from equilibrium: $3 \tau_{0}$
iii) late return towards equilibrium: $10 \tau_{0}$

$\frac{\eta}{s} \sim 0.2 \quad\left[K_{0}=1\right]$

SR ansatz
$\frac{\tau}{\tau_{0}}=1.2$
$K=1\left(\frac{\tau}{\tau_{0}}\right)^{2 / 3}$
$\left(\frac{\tau_{R E L}}{\tau_{\text {exp }}}=0.93\right.$,

$$
\left.\frac{\pi_{L}}{p}=-0.17\right)
$$

$$
\begin{aligned}
& +100 \% \\
& +50 \% \\
& +10 \% \\
& \pm 1 \% \\
& -10 \% \\
& -50 \% \\
& -100 \% \\
& <0
\end{aligned}
$$

- Typeset by FoilTEX - D. Molnar @ Zipranyi 201年, Dec 7-12, 20153

Grad IS $\left(p^{2}\right)$

SR ansatz
$\frac{\tau}{\tau_{0}}=3$
$\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.51\right.$,
$\left.\frac{\pi_{L}}{p}=-0.41\right)$
$+100 \%$
$+50 \%$
$+10 \%$
$\pm 1 \%$
-10%
-50%
-100%
<0

- Typeset by FoilTEX - D. Molnar @ Zipnanyi 2015, Dec 7-12, 20153

Grad IS $\left(p^{2}\right)$

IS with p^{1}

SR ansatz

$$
\frac{\tau}{\tau_{0}}=20
$$

$$
K=1\left(\frac{\tau}{\tau_{0}}\right)^{2 / 3}
$$

$$
\left(\frac{\tau_{R E L}}{\tau_{e x p}}=14\right.
$$

$$
\left.\frac{\pi_{L}}{p}=-0.16\right)
$$

$$
\begin{aligned}
& +100 \% \\
& +50 \% \\
& +10 \% \\
& \pm 1 \% \\
& -10 \% \\
& -50 \% \\
& -100 \% \\
& <0
\end{aligned}
$$

- Typeset by FoilTEX - D. Molnar @ Zignanyi 201事, Dec 7-12, 20153

$\frac{\eta}{s} \sim 0.1 \quad\left[K_{0}=2\right]$

SR ansatz
$\frac{\tau}{\tau_{0}}=1.2$

$$
K=2\left(\frac{\tau}{\tau_{0}}\right)^{2 / 3}
$$

$$
\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.47\right.
$$

$$
\left.\frac{\pi_{L}}{p}=-0.15\right)
$$

$$
\begin{aligned}
& +100 \% \\
& +50 \% \\
& +10 \% \\
& \pm 1 \% \\
& -10 \% \\
& -50 \% \\
& -100 \% \\
& <0
\end{aligned}
$$

- Typeset by FoilTEX - D. Molnar © Zippanyi 201年, Dec 7-12, 20153

SR ansatz
$\frac{\tau}{\tau_{0}}=2$

$$
\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.33\right.
$$

$$
\left.\frac{\pi_{L}}{p}=-0.29\right)
$$

$$
\begin{aligned}
& +100 \% \\
& +50 \% \\
& +10 \% \\
& \pm 1 \% \\
& -10 \% \\
& -50 \% \\
& -100 \% \\
& <0
\end{aligned}
$$

- Typeset by FoilTEX - D. Molnar @ Zigranyi 201通, Dec 7-11, 20153

Grad IS $\left(p^{2}\right)$

IS with p^{1}

SR ansatz
$\frac{\tau}{\tau_{0}}=20$

$$
\left(\frac{\tau_{R E L}}{\tau_{e x p}}=0.07\right.
$$

$$
\left.\frac{\pi_{L}}{p}=-0.08\right)
$$

$$
\begin{aligned}
& +100 \% \\
& +50 \% \\
& +10 \% \\
& \pm 1 \% \\
& -10 \% \\
& -50 \% \\
& -100 \% \\
& <0
\end{aligned}
$$

- Typeset by FoilTEX - D. Molnar @ Zignanyi 201事, Dec 7-12, 20153

$\frac{\eta}{s} \sim 0.03 \quad\left[K_{0}=6.49\right]$

SR ansatz
$\frac{\tau}{\tau_{0}}=1.2$

$$
\left(\frac{\tau_{R E L}}{\tau_{\exp }}=0.14\right.
$$

$$
\left.\frac{\pi_{L}}{p}=-0.11\right)
$$

$$
\begin{aligned}
& +100 \% \\
& +50 \% \\
& +10 \% \\
& \pm 1 \% \\
& -10 \% \\
& -50 \% \\
& -100 \% \\
& <0
\end{aligned}
$$

- Typeset by FoilTEX - D. Molnar @ Zipnanyi 201年, Dec 7-12, 20153

Grad IS $\left(p^{2}\right)$

SR ansatz
$\frac{\tau}{\tau_{0}}=1.6$

$$
\left(\frac{\tau_{R E L}}{\tau_{\exp }}=0.12\right.
$$

$$
\left.\frac{\pi_{L}}{p}=-0.12\right)
$$

$$
\begin{aligned}
& +100 \% \\
& +50 \% \\
& +10 \% \\
& \pm 1 \% \\
& -10 \% \\
& -50 \% \\
& -100 \% \\
& <0
\end{aligned}
$$

- Typeset by FoilTEX - D. Molnar © Zippanyi 201年, Dec 7-12, 20153

Grad IS $\left(p^{2}\right)$

IS with p^{1}

SR ansatz
$\frac{\tau}{\tau_{0}}=20$
$\left(\frac{\tau_{R E L}}{\tau_{\text {exp }}}=0.02\right.$,
$\left.\frac{\pi_{L}}{p}=-0.02\right)$

$$
\begin{aligned}
& +100 \% \\
& +50 \% \\
& +10 \% \\
& \pm 1 \% \\
& -10 \% \\
& -50 \% \\
& -100 \% \\
& <0
\end{aligned}
$$

- Typeset by FoilTEX - D. Molnar @ Zigranyi 201道, Dec 7-1 2, 20153

Grad IS $\left(p^{2}\right)$

\Rightarrow

For high shear viscosity, SR looks more accurate
For small viscosity and late times, IS with $p^{1.5}$ works best
(linear response indeed works when $\tau_{R E L} \ll \tau_{\text {exp }}$)
SR is generally very similar to IS with linear p^{1}

Mean RMS error

Cruder, single-number measure of accuracy

$$
\varepsilon_{R M S}(\tau) \equiv \sqrt{\frac{1}{N} \sum_{i j}\left(\frac{f_{\text {guess }}\left(p_{T, i}, \xi_{j}, \tau\right)}{f_{\text {transp }}\left(p_{T, i}, \xi_{j}, \tau\right)}-1\right)^{2}}
$$

DM \& Damodaran ('15):

IS gets much better if you ensure positivity for $f_{I S}=f_{e q}(1+\phi)$:

$$
\begin{aligned}
& 1+\phi(p) \rightarrow e^{\phi(p)} \rightarrow e^{\tanh \phi(p)} \rightarrow \\
& \rightarrow e^{\alpha \tanh \frac{\phi(p)}{\alpha}} \rightarrow e^{\alpha(p) \tanh \frac{\phi(p)}{\alpha(p)}} \rightarrow \ldots
\end{aligned}
$$

lots of options, take $\alpha=$ const $=2$

with positivity via "exponentiation" $(\alpha=2)$:

DM \& Damodaran ('15)

and for $K=2$:

DM \& Damodaran ('15)

Memory

no ansatz universally accurate \rightarrow fundamental limitations

- for massless system, only real hydro parameter is π_{L} / p

two points with identical π_{L} / p : e.g., $\boldsymbol{f}\left(1.2 \tau_{0}\right) / \boldsymbol{f}\left(18 \tau_{0}\right) \quad(K=1)$

DM \& Damodaran ('15):

insufficient info in $T^{\mu \nu}$ and N^{μ} for better than $\sim 10 \%$ accuracy (for $K=1$)

To improve: SR with 1 extra parameter, fit to minimize $\varepsilon_{R M S}$

$$
f_{\text {guess }}\left(p_{T}, \xi, \tau\right)=A(\tau) \exp \left[-\frac{p_{T} \operatorname{ch} \xi}{B(\tau)} \sqrt{1+C(\tau) \tanh ^{2} \xi+D(\tau) \frac{p_{T}^{0.3}}{1+p_{T}^{0.3} \frac{1}{\operatorname{ch}^{7} \xi}}}\right]
$$

DM \& Damodaran ('15):

Extra parameter predictable from π_{L} / p AND $d\left(\pi_{L} / p\right) / d \tau$

\Rightarrow slightly beyond std hydro but doable (dump derivs on HF)

Summary

- Getting particles from dissipative hydro requires some model of δf. Proposed δf models should be tested, e.g., against full kinetic theory.
- No free lunch: we compared Grad ($\sim p^{2}$), linearized Boltzmann, the Strickland-Romatschke ansatz, and relaxation time equation in the linear response regime in a simple $0+1 \mathrm{D}$ Bjorken scenario, and found none of these universally accurate.
We do confirm good applicability of the linearized response approach (which does provide universal answers), but only at late times $\tau / \tau_{0} \gtrsim 10$ and for fairly small $\eta / s \lesssim 0.05$.

Positivity via exponentiation much improves the Isreal-Stewart ansatz.

- Very accurate viscous phase space distributions require additional information from hydro, such as the time derivative of π_{L} / p (memory).

Many comparisons can be done (e.g., 2+1D for elliptic flow, massive particles, more complex interactions, multicomponent case, ...). Send us your δf 's.

