Internal variables and heat conduction in non-equilibrium thermodynamics

R. Kovács and P. Ván

Department of Energy Engineering, BME Department of Theoretical Physics, Wigner RCP, and Montavid Thermodynamic Research Group Budapest, Hungary

Dec 7. 2015.

About the non-relativistic heat conduction

• Paradox of the Fourier equation: infinite speed of propagation, parabolic type equation ("a": thermal diffusivity)

$$
\partial_t T = a \partial_{xx} T
$$

First modification (1958): Maxwell-Cattaneo-Vernotte (MCV) equation \rightarrow hyperbolic type, finite propagation speed \rightarrow second sound, temperature: around 1-20 K

$$
\tau_{\mathsf{q}} \partial_{tt} T + \partial_t T = \mathsf{a} \partial_{xx} T
$$

Narayanamurti et al.: Experimental proof of second sound in Bi ('74)

Experiments I.

What is the heat pulse experiment?!

Experiments II.

Beyond the phenomena of second sound \rightarrow ballistic propagation

How can it be modeled? Kinetic theory $+$ RET: phonon hydrodynamics

Kinetic theory - phonon hydrodynamics I.

$Interactions \rightarrow distributions$

- o Normal (N) processes: momentum is conserved
- Resistive (R) processes: momentum is not conserved
- Umklapp-processes: neither the energy, nor the momentum is conserved

Connection to heat conduction

- R-processes are dominant: diffusive propagation (Fourier)
- N-processes are dominant: wave propagation (MCV...)
- Ballistic propagation: heat conduction without interactions!

Kinetic theory - phonon hydrodynamics II.

Momentum series expansion $+$ truncation closure

$$
u_{\langle i_1 i_2 \ldots i_N \rangle} = \int k n_{\langle i_1 \ldots i_n \rangle} f dk.
$$

$$
\frac{\partial u_{\langle n\rangle}}{\partial t} + \frac{n^2}{4n^2 - 1} c \frac{\partial u_{\langle n-1\rangle}}{\partial x} + c \frac{\partial u_{\langle n+1\rangle}}{\partial x} = \begin{cases} 0 & n = 0\\ -\frac{1}{\tau_R} u_{\langle 1\rangle} & n = 1\\ -\left(\frac{1}{\tau_R} + \frac{1}{\tau_N}\right) u_{\langle n\rangle} & 2 \le n \le N \end{cases}
$$

It requires at least $N=30$ momentum equation to obtain the real propagation speeds. Results? See later!

About the internal variables

- Non-equilibrium description
- Nonlocal extensions in space and time \rightarrow generalizations
	- Rheology: Kluitenberg-Verhas body
	- Dual internal variables: beyond the Newton equation
	- Wave propagation: coupling between mechanical and thermal effects
- Non-equilibrium thermodynamics \rightarrow heat conduction
	- \bullet Diffusive propagation \rightarrow Fourier
	- Wave propagation ("Second sound") \rightarrow Maxwell-Cattaneo-Vernotte, Guyer-Krumhansl, and so on...
	- Ballistic propagation \rightarrow An unified continuum theory is missing! Propagation with speed of sound, mechanical coupling!

Continuum theory - Generalization of heat conduction I

Tensorial internal variable + extended entropy current:

- q^i is a *basic field variable*; Q^{ij} is an *internal variable*
- entropy density: $s(e,q^i,Q^{ij})=s_e(e)-\frac{m_1}{2}q^i\cdot q^i-\frac{m_2}{2}Q^{ij}\cdot Q^{ij}$
- entropy current: $J^i = b^{ij}q^j + B^{ijk}Q^{jk}$

Entropy production in 1 spatial dimension:

$$
\left(b-\frac{1}{T}\right)\partial_x q + \left(\partial_x b - m_1 \partial_t q\right)q - \left(\partial_x B - m_2 \partial_t Q\right)Q + B\partial_x Q \ge 0
$$

Linear relations between thermodynamic fluxes and forces, isotropy:

$$
m_1 \partial_t q - \partial_x b = -l_1 q,
$$

\n
$$
m_2 \partial_t Q - \partial_x B = -k_1 Q + k_{12} \partial_x q,
$$

\n
$$
b - \frac{1}{7} = -k_{21} Q + k_2 \partial_x q,
$$

\n
$$
B = n \partial_x Q.
$$

Continuum theory - Generalization of heat conduction I

Tensorial internal variable + extended entropy current:

- q^i is a *basic field variable*; Q^{ij} is an *internal variable*
- entropy density: $s(e,q^i,Q^{ij})=s_e(e)-\frac{m_1}{2}q^i\cdot q^i-\frac{m_2}{2}Q^{ij}\cdot Q^{ij}$
- entropy current: $J^i = b^{ij}q^j + B^{ijk}Q^{jk}$

Entropy production in 1 spatial dimension:

$$
\left(b-\frac{1}{T}\right)\partial_x q + \left(\partial_x b - m_1 \partial_t q\right)q - \left(\partial_x B - m_2 \partial_t Q\right)Q + B\partial_x Q \ge 0
$$

Linear relations between thermodynamic fluxes and forces:

$$
m_1 \partial_t q - \partial_x b = -l_1 q,
$$

\n
$$
m_2 \partial_t Q - \partial_x B = -k_1 Q + k_{12} \partial_x q,
$$

\n
$$
b - \frac{1}{T} = -k_{21} Q + k_2 \partial_x q,
$$

\n
$$
B = \rho \partial_x Q.
$$

Compatibility with kinetic theory

Properties of the hierarchical structure

- New quantity: $Q^{ij} \rightarrow$ flux of the heat flux
- **•** Effective model in the sense of material parameters
- Incorporates the *ballistic* effect
- Hyperbolic system:
	- **•** finite propagation speeds
	- the existence and uniqueness of the solution is proved

Generalized (dimensionless) equations

- MCV: $\tau_{\mathbf{g}}\partial_{tt}\mathbf{T} + \partial_t \mathbf{T} = \partial_{xx}\mathbf{T}$
- GK: $\tau_q \partial_{tt} T + \partial_t T = \partial_{xx} T + \kappa^2 \partial_{txx} T$
- Green-Naghdi: $\tau_{\bm{q}} \partial_{\bm{t} \bm{t}} \, \mathcal{T} = \partial_{\mathsf{x} \mathsf{x}} \, \mathcal{T} + \kappa^2 \partial_{\bm{t} \mathsf{x} \mathsf{x}} \, \mathcal{T}$
- **Ballistic-conductive:**

 $\tau_q \tau_Q \partial_{ttt} T + (\tau_q + \tau_Q) \partial_{tt} T + \partial_t T = \partial_{xx} T + (\kappa^2 + \tau_Q) \partial_{txx} T$

Hierarchy: Guyer-Krumhansl equation

With eliminated heat flux:

$$
\tau_q \partial_{tt} T + \partial_t T = \partial_{xx} T + \kappa^2 \partial_{txx} T
$$

Fourier equation:

$$
\tau_q \partial_{tt} T + \partial_t T = \partial_{xx} T + \kappa^2 \partial_{txx} T
$$

Time derivative of the Fourier equation: $\tau_q = \kappa^2$

$$
\tau_q \partial_{tt} T + \partial_t T = \partial_{xx} T + \kappa^2 \partial_{txx} T
$$

Solutions when $\tau_q \neq \kappa^2$? See after the experiments! Further example: rheology - hierarchy of the Hooke body...

Heat pulse experiments III. - NaF samples

Well-documented series of experiments...but

- The samples can be hardly distinguished (by peak thermal conductivity and sample length)
- The boundary conditions are not clear (e.g. pulse length)
- The fitted and measured material parameters \rightarrow temperature dependency?!
- Cooling effect during propagation? (see the fitting...)
- Can it be simulated as $1+1D$ problem? (longitudinal and transverse modes, excitation...)

The ballistic-conductive model I.

System of equations in dimensionless form:

$$
\tau_{\Delta} \frac{\partial T}{\partial t} + \frac{\partial q}{\partial x} = 0,
$$

$$
\tau_{q} \frac{\partial q}{\partial t} + q + \tau_{\Delta} \frac{\partial T}{\partial x} + \kappa \frac{\partial Q}{\partial x} = 0,
$$

$$
\tau_{Q} \frac{\partial Q}{\partial t} + Q + \kappa \frac{\partial q}{\partial x} = 0.
$$

Finite difference discretization

• Explicit scheme \rightarrow stability conditions with von Neumann method and Jury criterion.

The ballistic-conductive model II. - IC&BC

Initial conditions

All fields are zero at $t=0$.

Boundary conditions

Only for the field of heat flux \rightarrow discretization method!

$$
q(t,x=0) = \begin{cases} 1 - \cos(2\pi \cdot \frac{t}{t_{impulse}}) & \text{if } 0 < t \leq t_{impulse} \\ 0 & \text{if } t > t_{impulse} \end{cases}
$$

Shifted fields: One goes from $x = 0$ to $x = 1$, the others shifted by $\frac{\Delta x}{2}$.

The ballistic-conductive vs. RET (Dreyer-Struchtrup)

Material parameters: $k=13500 \frac{W}{mK}, c=1.8 \frac{J}{kgK}, \rho=2866 \frac{kg}{m^3}$ Other parameters: L = 6.3mm, $\Delta t = 10^{-7} s$, $\tau_q = 10.4 \Delta t$, $\tau_Q = 2.1 \Delta t$

Adiabatic boundary condition?!

The ballistic-conductive model vs. Y. Ma model

Complex viscosity model (Landau, Rogers...) Material parameters: $k=13500 \frac{W}{mK}, c=1.8 \frac{J}{kgK}, \rho=2866 \frac{kg}{m^3}$ Other parameters:

 $L = 7.9$ mm, $\Delta t = 0.24 \mu s$, $\tau_a = 0.937 \mu s$, $\tau_o = 0.248 \mu s$

Adiabatic boundary condition?! Modify the balance equation!

The ballistic-conductive model - Solution

$$
\partial_t e + \nabla \cdot \mathbf{q} = -\alpha (\mathcal{T}_{wave} - \mathcal{T}_0),
$$

Material parameters: $k=10200\frac{W}{mK}, c=1.8\frac{J}{kgK}, \rho=2866\frac{kg}{m^3}$ $\tau_a = 0.355 \mu s, \tau_Q = 0.21 \mu s$ and $\tilde{L} = 7.9 \mu m, \Delta t = 0.24 \mu s$

17 / 21

The ballistic-conductive model - further solutions I.

Guyer-Krumhansl equation:

$$
\tau_q \partial_{tt} T + \partial_t T = \partial_{xx} T + \kappa^2 \partial_{txx} T
$$

Non-Fourier solutions... MCV-region: $\tau_a > \kappa^2$ GK-region: $\tau_a < \kappa^2$ On room temperature?! Inhomogeneity... **EXPERIMENT!**

The ballistic-conductive model - further solutions II.

Arrangement of the measurement

The ballistic-conductive model - further solutions III.

Measurement on room temperature, layered sample On macroscopic scale the GK equation is the relevant generalization to characterize non-Fourier heat conduction.

20 / 21

[Internal variables and heat conduction in non-equilibrium thermodynamics](#page-0-0)

Thank you for your kind attention!