Non-extensive Statistical Models for Heavy-Ion Collisions

Tamás Sándor Biró²

¹Institute of Particle Physics Central China Normal University, Wuhan

²Heavy Ion Research Group MTA Wigner Research Centre for Physics, Budapest

Dec. 7, 2015

Outline

Preface

- q in Non-extensive Statistics
- q in Heavy-Ion Collisions
- p_T Spectra with Finite Heat Capacity
 - General Systems with Finite-Fluctuating Reservoirs
 - Superstatistics
- 3 p_T Spectra with T-independent and $\langle p_T^2 \rangle$
 - A 'Soft+Hard' Model
 - Fittings in *p_T* Spectra
 - Summary and Outlook

Outline

Preface

- q in Non-extensive Statistics
- q in Heavy-Ion Collisions
- p_T Spectra with Finite Heat Capacity
 - General Systems with Finite-Fluctuating Reservoirs
 - Superstatistics
- 3) p_T Spectra with T-independent and $\langle p_T^2 \rangle$
 - A 'Soft+Hard' Model
 - Fittings in p_T Spectra
- Summary and Outlook

Tsallis Statistical Mechanics

In 1988 [1] C. Tsallis suggested to use the non-extensive entropy formula,

$$S_q = \frac{\sum_{i=1}^W p_i^q - 1}{1 - q} := -\sum_{i=1}^W p_i^q \ln_q p_i$$
(1)

where q > 0 is the non-extensive parameter. Here we introduce the deformed *q*-exponential function $e_q^x \equiv [1 + (1 - q)x]^{\frac{1}{1-q}}$ and its inverse function $\ln_q(x) \equiv \frac{x^{1-q}-1}{1-q}$ (x > 0).

Tsallis-Pareto distribution

5/33

Next we use the OLM(Optimal Lagrange Multipliers)-Tsallis technique to give the generalized *q*-equilibrium probability distribution, namely, the Tsallis-Pareto distribution,

$$p_i = \frac{1}{Z_q} [1 - (1 - q)\beta\omega_i]^{\frac{1}{1 - q}}$$
⁽²⁾

Tsallis Fits to p_T Spectra for pp Collisions at LHC

In 2012 C. Wong and G. Wilk **[2]** considered the different cross section with a transverse Tsallis distribution in the form,

F

$$E\frac{d^3N_{ch}}{dp^3} = C\frac{dN_{ch}}{dy}(1+\frac{E_T}{nT})^{-n} \quad \text{(i)}$$

Figure : Left panel: Tsallis fits to the CMS and ATLAS Collaborations data for pp at 7 and 0.9 TeV. Right panel: the same data compared with the corresponding q = 1 (or $n \to \infty$) curves.

Outline

- q in Non-extensive Statistics
- q in Heavy-Ion Collisions

(2) p_T Spectra with Finite Heat Capacity

- General Systems with Finite-Fluctuating Reservoirs Superstatistics
- p_T Spectra with T-independent and $\langle p_T^2 \rangle$
 - A 'Soft+Hard' Model
 - Fittings in p_T Spectra
- Summary and Outlook

the Non-extensive Parameter q

Considering the general system with reservoir fluctuations, we have [4]

$$q = 1 - \frac{1}{C} + \frac{\Delta T^2}{T^2}$$
(4)

where *C* is the heat capacity.

Ideal gas: finite heat capacity,

$$C = \frac{E}{T}$$
(5)

8/33

9/33

Constant Relative Variance due to β -Fluctuations

When the relative variance due to $\beta-{\rm fluctuations}$ is a constant, namely,

$$\sigma^2 = \frac{\Delta T^2}{T^2} = const.$$
 (6)

Easily we get

$$T = E[\sigma^2 - (q - 1)]$$
(7)

where both *E* and σ^2 are constant.

Constant Average Occupancy

Next consider that the average occupancy in Negative Binomial n-Distributions(NBD) is a constant, namely,

$$f = \frac{N}{K} = const.$$
 (8)

Note that for NBD,

$$\langle n \rangle = f(k+1) \tag{9}$$

$$\Delta n^2 = f(k+1)(1+f)$$
 (10)

With the connection for $N/\beta \propto E$ being a constant, $\Delta T^2/T^2 = \Delta n^2/\langle n \rangle^2$, we can have

$$T = \frac{E}{f}(q-1) \tag{11}$$

(日)

where E and f are constant.

10/33

Constant Average Occupancy

Next consider that the average occupancy in Negative Binomial n-Distributions(NBD) is a constant, namely,

$$f = \frac{N}{K} = const.$$
 (8)

Note that for NBD,

$$\langle n \rangle = f(k+1) \tag{9}$$

$$\Delta n^2 = f(k+1)(1+f)$$
 (10)

With the connection for $N/\beta \propto E$ being a constant, $\Delta T^2/T^2 = \Delta n^2/\langle n \rangle^2$, we can have

$$T = \frac{E}{f}(q-1) \tag{11}$$

where E and f are constant.

10/33

Constant Average Occupancy

Next consider that the average occupancy in Negative Binomial n-Distributions(NBD) is a constant, namely,

$$f = \frac{N}{K} = const.$$
 (8)

Note that for NBD,

$$\langle n \rangle = f(k+1) \tag{9}$$

$$\Delta n^2 = f(k+1)(1+f)$$
 (10)

Solution With the connection for $N/\beta \propto E$ being a constant, $\Delta T^2/T^2 = \Delta n^2/\langle n \rangle^2$, we can have

$$T = \frac{E}{f}(q-1) \tag{11}$$

where E and f are constant.

Superstatistics

Compared with Data

Figure : Left panel: G. Wilk's collection, Eric School on complexity, 2015. Right panel: Our fitting plot with $T_{AA} = 0.22 - 1.25(q - 1)$ for the constant relative variance σ^2 case (E = 1.25 and $\sigma^2 = 0.176$) and $T_{pp} = q - 1$ for the constant average occupancy f case (E/f = 1).

Outline

Preface

- q in Non-extensive Statistics
- q in Heavy-Ion Collisions
- p_T Spectra with Finite Heat Capacity
 - General Systems with Finite-Fluctuating Reservoirs
 - Superstatistics

3 p_T Spectra with T-independent and $\langle p_T^2 \rangle$

- A 'Soft+Hard' Model
- Fittings in p_T Spectra

Summary and Outlook

A 'Soft+Hard' Model

In ultra-relative heavy-ion collisions, p_T spectra are effected by hadrons yields stemming not only from the QGP(Quark-Gluon-Plasma) ("soft"), but also from jets ("hard"). For a first approximation, therefore, we make out the distributions as two part, **[5]**

$$p^{0}\frac{dN}{d^{3}p} = (p^{0}\frac{dN}{d^{3}p})^{soft} + (p^{0}\frac{dN}{d^{3}p})^{hard}$$
(12)

That is to say, the transverse momentum spectrum of charged hadrons will be

$$\frac{dN}{2\pi p_T dp_T dy}|_{y=o} = \sum_i A_i \{1 + \frac{q_i - 1}{T_i} [\gamma_i (m_T - v_i p_T) - m]\}^{-\frac{1}{q_i - 1}}$$
(13)

where i = soft, hard and $E_i \equiv \gamma_i(m_T - v_i p_T) - m$ is the co-moving energy.

14/33

the Constant $\langle p_T^2 \rangle$ with *q*-exponential

• With the distributions of p_T , we have

$$\langle p_T^2 \rangle = \frac{\int p_T dp_T \frac{dN}{2\pi p_T dp_T dy}|_{y=o} p_T^2}{\int p_T dp_T \frac{dN}{2\pi p_T dp_T dy}|_{y=o}} \approx \frac{\int p_T^3 dp_T (1 + \frac{q-1}{T} p_T)^{-1/(q-1)}}{\int p_T dp_T (1 + \frac{q-1}{T} p_T)^{-1/(q-1)}}$$

$$= T^2 \frac{6}{(1 - 3(q-1))(1 - 4(q-1))}$$
(14)

where
$$q = q_{soft}$$
 and $T := T_{soft} \sqrt{\frac{1 + v_{soft}}{1 - v_{soft}}}$ is the Doppler-shifted parameter.

2 Consider the p_T spectra for centrality-dependent collisions, and the same $\langle p_T^2 \rangle$, we get

$$T = \sqrt{\frac{(1 - 3(q - 1))(1 - 4(q - 1))}{6} \langle p_T^2 \rangle}$$
(15)

(ロ) (四) (E) (E) (E) (E)

where $\langle p_T^2 \rangle$ is constant.

the Constant $\langle p_T^2 \rangle$ with *q*-exponential

• With the distributions of p_T , we have

$$\langle p_T^2 \rangle = \frac{\int p_T dp_T \frac{dN}{2\pi p_T dp_T dy}|_{y=o} p_T^2}{\int p_T dp_T \frac{dN}{2\pi p_T dp_T dy}|_{y=o}} \approx \frac{\int p_T^3 dp_T (1 + \frac{q-1}{T} p_T)^{-1/(q-1)}}{\int p_T dp_T (1 + \frac{q-1}{T} p_T)^{-1/(q-1)}}$$

$$= T^2 \frac{6}{(1 - 3(q-1))(1 - 4(q-1))}$$
(14)

where $q = q_{soft}$ and $T := T_{soft} \sqrt{\frac{1 + v_{soft}}{1 - v_{soft}}}$ is the Doppler-shifted parameter.

2 Consider the p_T spectra for centrality-dependent collisions, and the same $\langle p_T^2 \rangle$, we get

$$T = \sqrt{\frac{(1 - 3(q - 1))(1 - 4(q - 1))}{6} \langle p_T^2 \rangle}$$
(15)

where $\langle p_T^2 \rangle$ is constant.

A 'Soft+Hard' Model

the Constant $\langle p_T^2 \rangle$ with κ -exponential

(a) < (a) < (b) < (b)

In comparison, we study the 'soft+hard' model with non-extensive κ -exponential distributions by just replacing the *q*-exponential in Eq.(13) with κ -exponential[6], $[\sqrt{1 + (\kappa E_i/T_i)^2} + \kappa E_i/T_i]^{-1/\kappa}$. Then we recalculate the $\langle p_T^2 \rangle$ as,

$$\langle p_T^2 \rangle = T^2 \frac{6}{1 - 16\kappa^2} \tag{16}$$

namely,

$$T = \sqrt{\frac{1 - 16(q - 1)^2}{6} \langle p_T^2 \rangle}$$
(17)

with $\kappa \equiv q - 1$.

A 'Soft+Hard' Model

Constant $\langle p_T^2 \rangle$

Figure : $T = \sqrt{\frac{(1-3(q-1))(1-4(q-1))}{6}} \langle p_T^2 \rangle$ for Tsallis *q*-exponential and $T = \sqrt{\frac{1-16(q-1)^2}{6}} \langle p_T^2 \rangle$ for Kaniadakis κ -exponential.

Tsallis' q-exponential Fittings

Figure : p_T spectra of charged hadrons stemming from various centrality *PbPb* collisions at $\sqrt{s} = 2.76 ATeV$ for 'soft+hard' model with Tsallis *q*-exponential distributions.

Figure : p_T spectra of charged hadrons stemming from various centrality *PbPb* collisions at $\sqrt{s} = 2.76 ATeV$ for 'soft+hard' model with Kaniadakis κ -exponential distributions.

Fitting Parameters with Constant $< p_T^2 >$

Figure : Fitting parameters T vs. $\kappa = q - 1$ ($T := T_s \sqrt{\frac{1+v_s}{1-v_s}}$) in p_T spectra of charged hadrons stemming from various centrality PbPb collisions at $\sqrt{s} = 2.76 \ ATeV$ for 'soft+hard' model with Tsallis q- and Kaniadakis κ -exponential distributions, respectively.

Outline

Preface

- q in Non-extensive Statistics
- q in Heavy-Ion Collisions
- *p_T* Spectra with Finite Heat Capacity
 General Systems with Finite-Fluctuating Reservoirs
 - Superstatistics
- 3 p_T Spectra with T-independent and $\langle p_T^2 \rangle$ • A 'Soft+Hard' Model
 - A Solt+Halu Wouer
 Eittinge in a Speatre
 - Fittings in *p_T* Spectra

Summary and Outlook

Summary and Outlook

- The Tsallis-Pareto distribution is introduced as well as some of its application in heavy-ion collisions.
- 2 For the non-extensive parameter q, two different models are studied to show its connection with T in fitting the data.
- A "Soft+Hard" model is re-considered with two different non-extensive distrbutions. Moreover, with constant $\langle p_T^2 \rangle$ the fitting parameters are studied.
- Next the connections and comparisons of these models will be studied further.

Thank You!!!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Backup Slides

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Cited Papers

- C. Tsallis, J. Stat. Phys. 52, (1988) 479.
- C. Wong and G. Wilk, A. Phys. Pol. B. 43 2047 (2012)
- Zebo Tang, et. al., Phys. Rev. C 79 051901 (R) (2009)
- T. S. Biro, G. G. Barnafoldi and P. Van, Phys. A 417 (2015) 215
- K. Urmossy, T. S. Biro, G. G. Barnafoldi and Z. Xu, arXiv: 1405.3963v2
- G. Kaniadakis, Statistical mechanics in the context of special relativity II, Phys. Rev. E 72, 036108 (2005)
- J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 92, 112301 (2004).

In non-extensive statistics, for an arbitrary physical quantity A, the following normalized q-expectation value is introduced,

$$_q \equiv \frac{\sum_{i=1}^W p_i^q A_i}{\sum_{j=1}^W p_j^q} \equiv \sum_{i=1}^W P_i A_i$$
 (18)

where $\{A_i\}$ are the corresponding eigenvalues in the system and $P_i \equiv \frac{p_i^q}{\sum_{j=1}^W p_j^q}$ are the escort probabilities, which are normalized naturally. Consider the canonical ensemble. To obtain the thermal equilibrium distribution associated with a conservative physical system in contact with the thermostat we shall extremize S_q under the constraints,

$$\sum_{i=1}^{W} p_i = 1, \qquad \sum_{i=1}^{W} P_i \epsilon_i = U_q \qquad (19)$$

Next we use the OLM(Optimal Lagrange Multipliers)-Tsallis technique to give the generalized *q*-equilibrium probability distribution.

•
$$\Phi[p_i] = S_q - \alpha \sum_{i}^{W} p_i - \beta \sum_{i}^{W} P_i \epsilon_i$$

• $\partial \Phi[p_i] / \partial p_i = 0$

$$p_{i} = \frac{1}{\bar{Z}_{q}} [1 - (1 - q) \frac{\beta^{*}}{\sum_{i=1}^{W} p_{j}^{q}} (\epsilon_{i} - U_{q})]^{\frac{1}{1 - q}}$$
$$= \frac{1}{Z_{q}} [1 - (1 - q) \frac{\beta}{\sum_{i=1}^{W} p_{j}^{q}} \epsilon_{i}]^{\frac{1}{1 - q}} \equiv \frac{1}{Z_{q}} e_{q}^{-\beta'\epsilon_{i}}$$
(20)

where $\beta' = \frac{\beta}{\sum p_j^q} = \frac{\beta^*}{\sum p_j^q + (1-q)\beta^*U_q}$, Z_q and \bar{Z}_q denotes the corresponding normalized constant.

For the general system with reservoir fluctuations, we consider the canonical approach: expansion for samll $\omega \ll E$,

$$<\frac{\Omega_{n}(E-\omega)}{\Omega_{n}(E)} > = < e^{S(E-\omega)-S(E)} >$$

=< $e^{-\omega S'(E)+\omega^{2}S''(E)/2-\cdots} >$
= $1-\omega < S'(E) > +\frac{\omega^{2}}{2} < S'(E)^{2} + S''(E) > -\cdots$
(21)

Compare it with the expansion of Tsallis-Pareto distribution

$$[1 + (q-1)\frac{\omega}{T}]^{-\frac{1}{q-1}} = 1 - \frac{\omega}{T} + q\frac{\omega^2}{2T^2} - \cdots$$
(22)

with respect to the relations, C = dE/dT, easy to get

$$\frac{1}{T} = \langle \beta \rangle = \langle S'(E) \rangle, \quad q = 1 - \frac{1}{C} + \frac{\Delta \beta^2}{\langle \beta \rangle^2}$$
(23)

Consider the function, $G(t) := \ln \sum p_n e^{nt}$, easily we have

$$G(0) = 0 \tag{24}$$

Expand it at t = 0,

$$G(0) + tG'(t) + \frac{t^2}{2} + \dots = t < n > + \frac{t^2}{2}\Delta n^2 + \dots$$
(25)

where $\Delta n^2 \equiv \langle n^2 \rangle - \langle n \rangle^2$. So we have

 $G'(0) = \langle n \rangle, \quad G''(0) = \Delta n^2$ (26)

・ロト < 回 ト < 巨 ト < 巨 ト 三 の へ ()
28/33
</p>

Consider NBD,
$$p_n = \binom{n+k}{n} f^n (1+f)^{-n-k-1}$$
, so
 $G(t) = \ln \sum \binom{n+k}{n} f^n (1+f)^{-n-k-1} e^{nt}$
 $= \ln \sum \binom{n+k}{n} (fe^t)^n (1+f)^{-n-k-1}$
 $= \ln (1+f-fe^t)^{-k-1}$
 $= -(1+k) \ln (1+f-fe^t)$

Then we can have

$$G'(0) = f(k+1) = \langle n \rangle,$$

$$G''(0) = f(k+1)(f+1) = \Delta n^2$$
(28)

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 目 の Q ()
29/33

(27

Note

- For the derivation of Eq.(14), during the integrals the hard part is neglected as well as the mass of particles, with respect to the integrating range and p_T spectra.
- **2** For the Fig in p17, it is plotted with $\langle p_T^2 \rangle = 1$.
- Solution For the Fig in p20, the four fitting functions are $0.34015\sqrt{1-16\kappa^2}$, $0.333699\sqrt{1-7(q-1)+12(q-1)^2}$, 1.23754(q-1) and 1.66185κ respectively.

Note

• In C. Wong and G. Wilk's fig, $E_T = m_T - m = \sqrt{m^2 + p_T^2 - m}$ and the integral of it is used to fit the experimental data,

$$\langle E\frac{d^3N_{ch}}{dp^3}\rangle_{\eta} = \frac{C}{2\eta_0}\frac{dN_{ch}}{dy}\int_{-\eta_0}^{\eta_0}d\eta\frac{dy}{d\eta}(1+\frac{E_T}{nT})^{-n}$$
(29)

with assuming now a rapidity plateau structure with a constant $A = CdN_{ch}/dy$ and $m = m_{\pi} = 140 \ MeV$. So the fitting parameters are A = 4.06, n = 6.60 and $T = 147 \ MeV$ for $\sqrt{s} = 7 \ TeV$ and A = 4.01, n = 7.65 and $T = 128 \ MeV$ for $\sqrt{s} = 0.9 \ TeV$. Moreover, the ATLAS measurement has a slightly larger η window, $|\eta| \le 2.5$, instead of CMS's $|\eta| \le 2.4$ but same spectra or data. And the p_T values extends from 0.5 to 36 for 7 and from 0.5 to 31 for 0.9 (*GeV*).

Power-Law Functions in Au + Au Collisions

Z. Tang, et.al. [3] also rewrite the usual Boltzmann distribution in an m_T exponential form as a power-law distribution.

Figure : Identified particle p_T spectra in Au + Au at 200 GeV in $0 \sim 10\%$ central collisions (a) and in peripheral $60 \sim 80\%$ collisions (b).

Note

In Z. Tang's fig, the solid curves represent the TBW(Tsallis-Blast-Wave model) fit and the dashed lines are BGBW (Boltzmann-Gibbs-Blast-Wave model) calculations with flow velocity β and temperature T values from [7]. Only fits to particles are shown because both models have the same spectral shapes for particles and anti-particles. Fitting parameters are shown as, $\beta = 0.047 \pm 0.009$, $T = 0.122 \pm 0.002$ and $q-1 = 0.018 \pm 0.005$ for $0 \sim 10\%$ and $\beta = 0 \pm 0.05$, $T = 0.114 \pm 0.003$ and $q - 1 = 0.086 \pm 0.002$ for $60 \sim 80\%$. More are seen in [3].