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Preface q in Non-extensive Statistics

Tsallis Statistical Mechanics

In 1988 [1] C. Tsallis suggested to use the non-extensive entropy
formula,

Sq =

∑W
i=1 pq

i − 1
1− q

:= −
W∑

i=1

pq
i lnq pi (1)

where q > 0 is the non-extensive parameter. Here we introduce the
deformed q-exponential function ex

q ≡ [1 + (1− q)x]
1

1−q and its inverse
function lnq(x) ≡ x1−q−1

1−q (x > 0).
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Preface q in Non-extensive Statistics

Tsallis-Pareto distribution

Next we use the OLM(Optimal Lagrange Multipliers)-Tsallis technique
to give the generalized q-equilibrium probability distribution, namely,
the Tsallis-Pareto distribution,

pi =
1
Zq

[1− (1− q)βωi]
1

1−q (2)
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Preface q in Heavy-Ion Collisions

Tsallis Fits to pT Spectra for pp Collisions at LHC

Figure : Left panel: Tsallis fits to the CMS and
ATLAS Collaborations data for pp at 7 and 0.9
TeV. Right panel: the same data compared
with the corresponding q = 1 (or n→∞)
curves.

In 2012 C. Wong and
G. Wilk [2] considered
the different cross section
with a transverse Tsallis
distribution in the form,

E
d3Nch

dp3 = C
dNch

dy
(1 +

ET

nT
)−n (3)
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pT Spectra with Finite Heat Capacity
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pT Spectra with Finite Heat Capacity General Systems with Finite-Fluctuating Reservoirs

the Non-extensive Parameter q

1 Considering the general system with reservoir fluctuations, we
have [4]

q = 1− 1
C

+
∆T2

T2 (4)

where C is the heat capacity.
2 Ideal gas: finite heat capacity,

C =
E
T

(5)
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pT Spectra with Finite Heat Capacity Superstatistics

Constant Relative Variance due to β−Fluctuations

When the relative variance due to β−fluctuations is a constant,
namely,

σ2 =
∆T2

T2 = const. (6)

Easily we get

T = E[σ2 − (q− 1)] (7)

where both E and σ2 are constant.
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pT Spectra with Finite Heat Capacity Superstatistics

Constant Average Occupancy

1 Next consider that the average occupancy in Negative Binomial
n−Distributions(NBD) is a constant, namely,

f =
N
K

= const. (8)

2 Note that for NBD,

〈n〉 = f (k + 1) (9)

∆n2 = f (k + 1)(1 + f ) (10)

3 With the connection for N/β ∝ E being a constant,
∆T2/T2 = ∆n2/〈n〉2, we can have

T =
E
f

(q− 1) (11)

where E and f are constant.
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pT Spectra with Finite Heat Capacity Superstatistics

Compared with Data
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Figure : Left panel: G. Wilk’s collection, Eric School on complexity, 2015.
Right panel: Our fitting plot with TAA = 0.22− 1.25(q− 1) for the constant
relative variance σ2 case (E = 1.25 and σ2 = 0.176) and Tpp = q− 1 for the
constant average occupancy f case (E/f = 1).
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pT Spectra with T−independent and 〈p2
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pT Spectra with T−independent and 〈p2
T〉 A ’Soft+Hard’ Model

A ’Soft+Hard’ Model

In ultra-relative heavy-ion collisions, pT spectra are effected by
hadrons yields stemming not only from the QGP(Quark-Gluon-Plasma)
("soft"), but also from jets ("hard"). For a first approximation, therefore,
we make out the distributions as two part, [5]

p0 dN
d3p

= (p0 dN
d3p

)soft + (p0 dN
d3p

)hard (12)

That is to say, the transverse momentum spectrum of charged hadrons
will be

dN
2πpTdpTdy

|y=o =
∑

i

Ai{1 +
qi − 1

Ti
[γi(mT − vipT)− m]}−

1
qi−1 (13)

where i = soft, hard and Ei ≡ γi(mT − vipT)− m is the co-moving
energy.
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pT Spectra with T−independent and 〈p2
T〉 A ’Soft+Hard’ Model

the Constant 〈p2
T〉 with q−exponential

1 With the distributions of pT , we have

〈p2
T〉 =

∫
pTdpT

dN
2πpT dpT dy |y=op2

T∫
pTdpT

dN
2πpT dpT dy |y=o

≈
∫

p3
TdpT(1 + q−1

T pT)−1/(q−1)∫
pTdpT(1 + q−1

T pT)−1/(q−1)

= T2 6
(1− 3(q− 1))(1− 4(q− 1))

(14)

where q = qsoft and T := Tsoft

√
1+vsoft
1−vsoft

is the Doppler-shifted
parameter.

2 Consider the pT spectra for centrality-dependent collisions, and
the same 〈p2

T〉, we get

T =

√
(1− 3(q− 1))(1− 4(q− 1))

6
〈p2

T〉 (15)

where 〈p2
T〉 is constant.
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pT Spectra with T−independent and 〈p2
T〉 A ’Soft+Hard’ Model

the Constant 〈p2
T〉 with κ−exponential

In comparison, we study the ’soft+hard’ model with non-extensive
κ−exponential distributions by just replacing the q−exponential in
Eq.(13) with κ−exponential[6], [

√
1 + (κEi/Ti)2 + κEi/Ti]

−1/κ.
Then we recalculate the 〈p2

T〉 as,

〈p2
T〉 = T2 6

1− 16κ2 (16)

namely,

T =

√
1− 16(q− 1)2

6
〈p2

T〉 (17)

with κ ≡ q− 1.
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pT Spectra with T−independent and 〈p2
T〉 A ’Soft+Hard’ Model

Constant 〈p2
T〉

Tsallis

Kaniadakis
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Figure : T =
√

(1−3(q−1))(1−4(q−1))
6 〈p2

T〉 for Tsallis q−exponential and

T =
√

1−16(q−1)2

6 〈p2
T〉 for Kaniadakis κ−exponential.
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pT Spectra with T−independent and 〈p2
T〉 Fittings in pT Spectra

Tsallis’ q−exponential Fittings

Figure : pT spectra of charged hadrons stemming from various centrality PbPb
collisions at

√
s = 2.76 ATeV for ’soft+hard’ model with Tsallis q−exponential

distributions.
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pT Spectra with T−independent and 〈p2
T〉 Fittings in pT Spectra

Kaniadakis’ κ−exponential Fittings with κ = q− 1

Figure : pT spectra of charged hadrons stemming from various centrality PbPb
collisions at

√
s = 2.76 ATeV for ’soft+hard’ model with Kaniadakis

κ−exponential distributions.
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pT Spectra with T−independent and 〈p2
T〉 Fittings in pT Spectra

Fitting Parameters with Constant < p2
T >
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Figure : Fitting parameters T vs. κ = q− 1 (T := Ts

√
1+vs
1−vs

) in pT spectra of
charged hadrons stemming from various centrality PbPb collisions at√

s = 2.76 ATeV for ’soft+hard’ model with Tsallis q− and Kaniadakis
κ−exponential distributions, respectively. 19 / 33
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Summary and Outlook

Summary and Outlook

1 The Tsallis-Pareto distribution is introduced as well as some of its
application in heavy-ion collisions.

2 For the non-extensive parameter q, two different models are
studied to show its connection with T in fitting the data.

3 A "Soft+Hard" model is re-considered with two different
non-extensive distrbutions. Moreover, with constant 〈p2

T〉 the fitting
parameters are studied.

4 Next the connections and comparisons of these models will be
studied further.
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Summary and Outlook
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Summary and Outlook

Useful Derivations

In non-extensive statistics, for an arbitrary physical quantity A, the
following normalized q-expectation value is introduced,

< A >q≡
∑W

i=1 pq
i Ai∑W

j=1 pq
j

≡
W∑

i=1

PiAi (18)

where {Ai} are the corresponding eigenvalues in the system and
Pi ≡

pq
i∑W

j=1 pq
j

are the escort probabilities, which are normalized naturally.

Consider the canonical ensemble. To obtain the thermal equilibrium
distribution associated with a conservative physical system in contact
with the thermostat we shall extremize Sq under the constraints,

W∑
i=1

pi = 1,
W∑

i=1

Piεi = Uq (19)
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Summary and Outlook

Useful Derivations

Next we use the OLM(Optimal Lagrange Multipliers)-Tsallis technique
to give the generalized q-equilibrium probability distribution.

1 Φ[pi] = Sq − α
W∑
i

pi − β
W∑
i

Piεi

2 ∂Φ[pi]/∂pi = 0
3

pi =
1
Z̄q

[1− (1− q)
β∗∑W
i=1 pq

j

(εi − Uq)]
1

1−q

=
1
Zq

[1− (1− q)
β∑W

i=1 pq
j

εi]
1

1−q ≡ 1
Zq

e−β
′εi

q (20)

where β′ = β∑
pq

j
= β∗∑

pq
j +(1−q)β∗Uq

, Zq and Z̄q denotes the

corresponding normalized constant.
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Summary and Outlook

Useful Derivations

For the general system with reservoir fluctuations, we consider the
canonical approach: expansion for samll ω � E,

<
Ωn(E − ω)

Ωn(E)
> =< eS(E−ω)−S(E) >

=< e−ωS′(E)+ω2S′′(E)/2−··· >

= 1− ω < S′(E) > +
ω2

2
< S′(E)2 + S′′(E) > − · · ·

(21)

Compare it with the expansion of Tsallis-Pareto distribution

[1 + (q− 1)
ω

T
]
− 1

q−1 = 1− ω

T
+ q

ω2

2T2 − · · · (22)

with respect to the relations, C = dE/dT, easy to get

1
T

=< β >=< S′(E) >, q = 1− 1
C

+
∆β2

< β >2 (23)
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Summary and Outlook

Useful Derivations

Consider the function, G(t) := ln
∑

pnent, easily we have

G(0) = 0 (24)

Expand it at t = 0,

G(0) + tG′(t) +
t2

2
+ · · · = t < n > +

t2

2
∆n2 + · · · (25)

where ∆n2 ≡< n2 > − < n >2. So we have

G′(0) =< n >, G′′(0) = ∆n2 (26)
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Summary and Outlook

Useful Derivations

Consider NBD, pn =

(
n + k

n

)
f n(1 + f )−n−k−1, so

G(t) = ln
∑(

n + k
n

)
f n(1 + f )−n−k−1ent

= ln
∑(

n + k
n

)
(fet)n(1 + f )−n−k−1

= ln(1 + f − fet)−k−1

= −(1 + k) ln(1 + f − fet) (27)

Then we can have

G′(0) = f (k + 1) =< n >,

G′′(0) = f (k + 1)(f + 1) = ∆n2 (28)
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Summary and Outlook

Note

1 For the derivation of Eq.(14), during the integrals the hard part is
neglected as well as the mass of particles, with respect to the
integrating range and pT spectra.

2 For the Fig in p17, it is plotted with 〈p2
T〉 = 1.

3 For the Fig in p20, the four fitting functions are 0.34015
√

1− 16κ2,
0.333699

√
1− 7(q− 1) + 12(q− 1)2, 1.23754(q− 1) and 1.66185κ

respectively.
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Summary and Outlook

Note

1 In C. Wong and G. Wilk’s fig, ET = mT − m =
√

m2 + p2
T − m and

the integral of it is used to fit the experimental data,

〈E d3Nch

dp3 〉η =
C

2η0

dNch

dy

∫ η0

−η0

dη
dy
dη

(1 +
ET

nT
)−n (29)

with assuming now a rapidity plateau structure with a constant
A = CdNch/dy and m = mπ = 140 MeV. So the fitting parameters
are A = 4.06, n = 6.60 and T = 147 MeV for

√
s = 7 TeV and

A = 4.01, n = 7.65 and T = 128 MeV for
√

s = 0.9 TeV. Moreover,
the ATLAS measurement has a slightly larger η window, |η| ≤ 2.5,
instead of CMS’s |η| ≤ 2.4 but same spectra or data. And the pT

values extends from 0.5 to 36 for 7 and from 0.5 to 31 for 0.9
(GeV).
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Summary and Outlook

Power-Law Functions in Au + Au Collisions

Figure : Identified particle pT spectra in
Au + Au at 200 GeV in 0 ∼ 10% central
collisions (a) and in peripheral 60 ∼ 80%
collisions (b).

Z. Tang, et.al.
[3] also rewrite the usual
Boltzmann distribution in
an mT exponential form as
a power-law distribution,

d2N
2πmTdmTdy

∝ (1 +
q− 1

T
mT)−1/(q−1)(30)
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Summary and Outlook

Note

1 In Z. Tang’s fig, the solid curves represent the
TBW(Tsallis-Blast-Wave model) fit and the dashed lines are
BGBW (Boltzmann-Gibbs-Blast-Wave model) calculations with
flow velocity β and temperature T values from [7]. Only fits to
particles are shown because both models have the same spectral
shapes for particles and anti-particles. Fitting parameters are
shown as, β = 0.047± 0.009, T = 0.122± 0.002 and
q− 1 = 0.018± 0.005 for 0 ∼ 10% and β = 0± 0.05,
T = 0.114± 0.003 and q− 1 = 0.086± 0.002 for 60 ∼ 80%. More
are seen in [3].
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