Introduction 00	The model 0000000000	eLSM at finite T/μ_B 0000	Results 00000000000	Summary

Thermodynamical properties of the extended linear sigma model with Polyakov loops

Péter Kovács

Wigner Research Centre for Physics, Budapest

kovacs.peter@wigner.mta.hu

11th of December, 2015 Zimányi School 2015

Collaborators: Zsolt Szép, György Wolf

Introduction 00	The model 00000000000	eLSM at finite T/μ_B 0000	Results 000000000000	Summary
Overview				

- Motivation
- QCD's chiral symmetry, effective models

2 The model

- Vector meson extended PQM model
- Vector meson extended PQM model Polyakov loop
- 3 eLSM at finite T/μ_B
 - Field equations
 - Meson masses
 - Parametrization at T = 0

4 Results

- T or t dependence of order parameters and masses
- Pressure and derived quantities
- Critical endpoint
- 5 Summary

Phase diagram in the $T - \mu_{\rm B} - \mu_{\rm I}$ space

- At µ_B = 0 *T_c* = 153(3) MeV Y. Aoki,*et al.*, PLB **643**, 46 (2006)
- Is there a CEP?
- At *T* = 0 in μ_B where is the phase boundary?
- Behavior of thermodynamical quantities like pressure, interaction measure, quark density

Details of the phase diagram are heavily studied theoretically (Lattice, EFT), and experimentally (RHIC, LHC, FAIR, NICA)

If the quark masses are zero (chiral limit) \implies QCD invariant under the following global transformation (chiral symmetry):

 $U(3)_L \times U(3)_R \simeq U(3)_V \times U(3)_A = SU(3)_V \times SU(3)_A \times U(1)_V \times U(1)_A$

 $U(1)_V$ term \longrightarrow baryon number conservation

 $U(1)_A$ term \longrightarrow broken through axial anomaly

 $SU(3)_A$ term \longrightarrow broken down by any quark mass

 $SU(3)_V$ term \longrightarrow broken down to $SU(2)_V$ if $m_u = m_d \neq m_s$

 \rightarrow totally broken if $m_u \neq m_d \neq m_s$ (realized in nature) Since QCD is very hard to solve \rightarrow low energy effective models \rightarrow reflecting the global symmetries of QCD \rightarrow degrees of freedom: observable particles instead of quarks and gluons

Linear realization of the symmetry \longrightarrow linear sigma model

Introduction 00	The model ●0000000000	eLSM at finite T/μ_B	Results 000000000000	Summary
Vector meson exte	nded PQM model			
Lagrangi	an(1/2)			

$$\begin{split} \mathcal{L} &= \mathrm{Tr}[(D_{\mu}\Phi)^{\dagger}(D_{\mu}\Phi)] - m_{0}^{2}\mathrm{Tr}(\Phi^{\dagger}\Phi) - \lambda_{1}[\mathrm{Tr}(\Phi^{\dagger}\Phi)]^{2} - \lambda_{2}\mathrm{Tr}(\Phi^{\dagger}\Phi)^{2} \\ &+ c_{1}(\det\Phi + \det\Phi^{\dagger}) + \mathrm{Tr}[H(\Phi + \Phi^{\dagger})] - \frac{1}{4}\mathrm{Tr}(L_{\mu\nu}^{2} + R_{\mu\nu}^{2}) \\ &+ \mathrm{Tr}\left[\left(\frac{m_{1}^{2}}{2}\mathbbm{1} + \Delta\right)(L_{\mu}^{2} + R_{\mu}^{2})\right] + i\frac{g_{2}}{2}(\mathrm{Tr}\{L_{\mu\nu}[L^{\mu}, L^{\nu}]\} + \mathrm{Tr}\{R_{\mu\nu}[R^{\mu}, R^{\nu}]\}) \\ &+ \frac{h_{1}}{2}\mathrm{Tr}(\Phi^{\dagger}\Phi)\mathrm{Tr}(L_{\mu}^{2} + R_{\mu}^{2}) + h_{2}\mathrm{Tr}[(L_{\mu}\Phi)^{2} + (\Phi R_{\mu})^{2}] + 2h_{3}\mathrm{Tr}(L_{\mu}\Phi R^{\mu}\Phi^{\dagger}) \\ &+ \bar{\Psi}i\gamma_{\mu}D^{\mu}\Psi - g_{F}\bar{\Psi}(\Phi_{S} + i\gamma_{5}\Phi_{PS})\Psi, \end{split}$$

$$D^{\mu}\Phi = \partial^{\mu}\Phi - ig_{1}(L^{\mu}\Phi - \Phi R^{\mu}) - ieA^{\mu}_{e}[T_{3}, \Phi],$$

$$L^{\mu\nu} = \partial^{\mu}L^{\nu} - ieA^{\mu}_{e}[T_{3}, L^{\nu}] - \{\partial^{\nu}L^{\mu} - ieA^{\nu}_{e}[T_{3}, L^{\mu}]\},$$

$$R^{\mu\nu} = \partial^{\mu}R^{\nu} - ieA^{\mu}_{e}[T_{3}, R^{\nu}] - \{\partial^{\nu}R^{\mu} - ieA^{\nu}_{e}[T_{3}, R^{\mu}]\},$$

$$D^{\mu}\Psi = \partial^{\mu}\Psi - iG^{\mu}\Psi, \text{ with } G^{\mu} = g_{s}G^{\mu}_{a}T_{a}.$$

+ Polyakov loop potential

the matter and external fields are

$$\Phi = \sum_{i=0}^{8} (\sigma_i + i\pi_i) T_i, \quad H = \sum_{i=0}^{8} h_i T_i \qquad T_i : U(3) \text{ generators}$$
$$R^{\mu} = \sum_{i=0}^{8} (\rho_i^{\mu} - b_i^{\mu}) T_i, \quad L^{\mu} = \sum_{i=0}^{8} (\rho_i^{\mu} + b_i^{\mu}) T_i, \quad \Delta = \sum_{i=0}^{8} \delta_i T_i$$
$$\Psi = (u, d, s)^{\mathsf{T}}$$

non strange – strange base:

$$egin{aligned} \xi_{N} &= \sqrt{2/3}\xi_{0} + \sqrt{1/3}\xi_{8}, \ \xi_{S} &= \sqrt{1/3}\xi_{0} - \sqrt{2/3}\xi_{8}, \ \xi \in (\sigma_{i}, \pi_{i},
ho_{i}^{\mu}, b_{i}^{\mu}, h_{i}) \end{aligned}$$

broken symmetry: non-zero condensates $\langle \sigma_{N/S} \rangle \equiv \bar{\sigma}_{N/S}$

Vector meson extended PQM model

Included fields - pseudoscalar and scalar meson nonets

$$\Phi_{PS} = \sum_{i=0}^{8} \pi_{i} T_{i} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\eta_{N} + \pi^{0}}{\sqrt{2}} & \pi^{+} & K^{+} \\ \pi^{-} & \frac{\eta_{N} - \pi^{0}}{\sqrt{2}} & K^{0} \\ K^{-} & K^{0} & \eta_{S} \end{pmatrix} (\sim \bar{q}_{i} \gamma_{5} q_{j})$$

$$\Phi_{S} = \sum_{i=0}^{8} \sigma_{i} T_{i} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\sigma_{N} + a_{0}^{0}}{\sqrt{2}} & a_{0}^{+} & K_{S}^{+} \\ a_{0}^{-} & \frac{\sigma_{N} - a_{0}^{0}}{\sqrt{2}} & K_{S}^{0} \\ K_{S}^{-} & K_{S}^{0} & \sigma_{S} \end{pmatrix} (\sim \bar{q}_{i} q_{j})$$

Particle content:

Pseudoscalars: $\pi(138), K(495), \eta(548), \eta'(958)$ Scalars: $a_0(980 \text{ or } 1450), K_5(800 \text{ or } 1430),$ 2 of $f_0(500, 980, 1370, 1500, 1710)$

The model 000●0000000 eLSM at finite T/μ_B 0000

Results 0000000000000 Summary

Vector meson extended PQM model

Structure of scalar mesons below 2 GeV

	Mass (MeV)	width (MeV)	decays
$a_0(980)$	980 ± 20	50 - 100	$\pi\pi$ dominant
$a_0(1450)$	1474 ± 19	265 ± 13	$\pi\eta$, $\pi\eta'$, $Kar{K}$
$K_s(800) = \kappa$	682 ± 29	547 ± 24	$K\pi$
$K_{s}(1430)$	1425 ± 50	270 ± 80	$K\pi$ dominant
$f_0(500) = \sigma$	400–550	400 - 700	$\pi\pi$ dominant
$f_0(980)$	980 ± 20	40 - 100	$\pi\pi$ dominant
$f_0(1370)$	1200–1500	200 - 500	$\pi\pipprox$ 250, $Kar{K}pprox$ 150
$f_0(1500)$	1505 ± 6	109 ± 7	$\pi\pipprox$ 38, $Kar{K}pprox$ 9.4
$f_0(1710)$	1722 ± 6	135 ± 7	$\pi\pipprox$ 30, $Kar{K}pprox$ 71

Possible scalar states: $\bar{q}q$, tetraquarks, glueballs scalar $\bar{q}q$ nonet content: $1 a_0$, $1 K_s$, and $2 f_0$: $a_0^{\bar{q}q} \rightarrow a_0(1450)$, $K_s^{\bar{q}q} \rightarrow K_s(1430)$, $f_0^{L,\bar{q}q} \rightarrow f_0(1370)$, $f_0^{H,\bar{q}q} \rightarrow f_0(1710)$ Parganlija et al., PRD87, 014011 tetraquarks: $f_0(500)$, $f_0(980)$, $a_0(980)$, $K_s(800)$? glueballs: $f_0(1500)$?

Introduction	The model	eLSM at finite T/μ_B	Results	Summary
00	0000●000000	0000	00000000000	
Vector meson extended F	'QM model			

Included fields - vector meson nonets

$$V^{\mu} = \sum_{i=0}^{8} \rho_{i}^{\mu} T_{i} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\omega_{N} + \rho^{0}}{\sqrt{2}} & \rho^{+} & K^{\star +} \\ \rho^{-} & \frac{\omega_{N} - \rho^{0}}{\sqrt{2}} & K^{\star 0} \\ K^{\star -} & K^{\star 0} & \omega_{S} \end{pmatrix}^{\mu}$$
$$A^{\mu} = \sum_{i=0}^{8} b_{i}^{\mu} T_{i} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{f_{1N} + a_{1}^{0}}{\sqrt{2}} & a_{1}^{+} & K_{1}^{+} \\ a_{1}^{-} & \frac{f_{1N} - a_{1}^{0}}{\sqrt{2}} & K_{1}^{0} \\ K_{1}^{-} & K_{1}^{0} & f_{1S} \end{pmatrix}^{\mu}$$

Particle content:

Vector mesons: $\rho(770), K^{\star}(894), \omega_N = \omega(782), \omega_S = \phi(1020)$ Axial vectors: $a_1(1230), K_1(1270), f_{1N}(1280), f_{1S}(1426)$

Spontaneous symmetry breaking

Interaction is approximately chiral symmetric, spectra is not \longrightarrow SSB:

$$\sigma_{N/S} \to \sigma_{N/S} + \bar{\sigma}_{N/S} \qquad \bar{\sigma}_{N/S} \equiv <\sigma_{N/S} >$$

For tree level masses we have to select all terms quadratic in the new fields. Some of the terms include mixings arising from terms like $Tr[(D_{\mu}\Phi)^{\dagger}(D_{\mu}\Phi)]$:

$$\begin{split} \eta_{N} &- f_{1N}^{\mu} : -g_{1} \bar{\sigma}_{N} f_{1N}^{\mu} \partial_{\mu} \eta_{N}, \\ \pi &- a_{1}^{\mu} : -g_{1} \bar{\sigma}_{N} (a_{1}^{\mu +} \partial_{\mu} \pi^{-} + a_{1}^{\mu 0} \partial_{\mu} \pi^{0}) + \text{h.c.}, \\ \eta_{S} &- f_{1S}^{\mu} : -\sqrt{2} g_{1} \bar{\sigma}_{S} f_{1S}^{\mu} \partial_{\mu} \eta_{S}, \end{split}$$
(1)
$$\begin{aligned} \kappa_{S} &- \kappa_{\mu}^{\star} : \frac{i g_{1}}{2} (\sqrt{2} \bar{\sigma}_{S} - \bar{\sigma}_{N}) (\bar{\kappa}_{\mu}^{\star 0} \partial^{\mu} \kappa_{S}^{0} + \kappa_{\mu}^{\star -} \partial^{\mu} \kappa_{S}^{+}) + \text{h.c.}, \\ \kappa &- \kappa_{1}^{\mu} : -\frac{g_{1}}{2} (\bar{\sigma}_{N} + \sqrt{2} \bar{\sigma}_{S}) (\kappa_{1}^{\mu 0} \partial_{\mu} \bar{\kappa}^{0} + \kappa_{1}^{\mu +} \partial_{\mu} \kappa^{-}) + \text{h.c.}. \end{split}$$

The model ○○○○○○●○○○○ eLSM at finite T/μ_B 0000

Results 000000000000 Summary

Vector meson extended PQM model - Polyakov loop

Polyakov loops in Polyakov gauge

Polyakov loop variables:
$$\Phi(\vec{x}) = \frac{\operatorname{Tr}_c L(\vec{x})}{N_c}$$
 and $\bar{\Phi}(\vec{x}) = \frac{\operatorname{Tr}_c \bar{L}(\vec{x})}{N_c}$ with $L(x) = \mathcal{P} \exp\left[i \int_0^\beta d\tau G_4(\vec{x}, \tau)\right]$

- \hookrightarrow signals center symmetry ($\mathbb{Z}_3)$ breaking at the deconfinement transition
- low *T*: confined phase, $\langle \Phi(\vec{x}) \rangle$, $\langle \bar{\Phi}(\vec{x}) \rangle = 0$
- high *T*: deconfined phase, $\langle \Phi(\vec{x}) \rangle$, $\langle \bar{\Phi}(\vec{x}) \rangle \neq 0$
 - Polyakov gauge: $G_4(\vec{x}, \tau) = G_4(\vec{x})$, plus gauge rotation to diagonal form in color space
 - further simplification: \vec{x} -independence

$$\hookrightarrow \quad L = e^{ieta G_4} = ext{diag}(a, b, c) \left(\stackrel{!}{\in} SU(N_c) \right); \quad a, b, c \in \mathbb{Z}$$

 \hookrightarrow use this to calculate partition function of free quarks on constant gluon background

The model ○○○○○○○●○○○ eLSM at finite T/μ_B 0000

Results 000000000000 Summary

Vector meson extended PQM model - Polyakov loop

Effects of Polyakov loops on FD statistics

Inclusion of the Polyakov loop modifies the Fermi-Dirac distribution function

$$f(E_{p} - \mu_{q}) \longrightarrow f_{\Phi}^{+}(E_{p}) = \frac{\left(\bar{\Phi} + 2\Phi e^{-\beta(E_{p} - \mu_{q})}\right)e^{-\beta(E_{p} - \mu_{q})} + e^{-3\beta(E_{p} - \mu_{q})}}{1 + 3\left(\bar{\Phi} + \Phi e^{-\beta(E_{p} - \mu_{q})}\right)e^{-\beta(E_{p} - \mu_{q})} + e^{-3\beta(E_{p} - \mu_{q})}}$$

$$f(E_{p} + \mu_{q}) \longrightarrow f_{\Phi}^{-}(E_{p}) = \frac{\left(\Phi + 2\bar{\Phi}e^{-\beta(E_{p} + \mu_{q})}\right)e^{-\beta(E_{p} + \mu_{q})} + e^{-3\beta(E_{p} + \mu_{q})}}{1 + 3\left(\Phi + \bar{\Phi}e^{-\beta(E_{p} + \mu_{q})}\right)e^{-\beta(E_{p} + \mu_{q})} + e^{-3\beta(E_{p} + \mu_{q})}}$$

 $\Phi, \bar{\Phi} \to 0 \Longrightarrow f_{\Phi}^{\pm}(E_p) \to f(3(E_p \pm \mu_q)) \quad \Phi, \bar{\Phi} \to 1 \Longrightarrow f_{\Phi}^{\pm}(E_p) \to f(E_p \pm \mu_q)$ three-particle state appears: mimics confinement of quarks within baryons

the effect of the Polyakov loop is more relevant for $T < T_c$

at T = 0 there is no difference between models with and without Polyakov loop: $\Theta(3(\mu_q - E_p)) \equiv \Theta((\mu_q - E_p))$ H. Hansen et al., PRD75, 065004

-3

Rc Φ

Pad Form of the potential:

- Polynomial: $U_{YM}^{Poly} \longrightarrow$ Not used (e.g.: negative susceptibilities)
- Logarithmic: U_{YM}
- Improved Polyakov loop potential (logarithmic): Uglue

I.) Simple polynomial potential invariant under \mathbb{Z}_3 and charge conjugation: R.D.Pisarski, PRD 62, 111501

$$\frac{\mathcal{U}_{\text{poly}}^{\text{YM}}(\Phi,\Phi)}{T^4} = -\frac{b_2(T)}{2}\bar{\Phi}\Phi - \frac{b_3}{6}\left(\Phi^3 + \bar{\Phi}^3\right) + \frac{b_4}{4}\left(\bar{\Phi}\Phi\right)^2$$

with $b_2(T) = a_0 + a_1\frac{T_0}{T} + a_2\frac{T_0^2}{T^2} + a_3\frac{T_0^3}{T^3}$

II.) Logarithmic potential coming from the *SU*(3) Haar measure of group integration K. Fukushima, Phys. Lett. **B591**, 277 (2004)

$$\frac{\mathcal{U}_{\log}^{VM}(\Phi,\bar{\Phi})}{T^4} = -\frac{1}{2}a(T)\Phi\bar{\Phi} + b(T)\ln\left[1 - 6\Phi\bar{\Phi} + 4(\Phi^3 + \bar{\Phi}^3) - 3(\Phi\bar{\Phi})^2\right]$$

with $a(T) = a_0 + a_1\frac{T_0}{T} + a_2\frac{T_0^2}{T^2}, \quad b(T) = b_3\frac{T_0^3}{T^3}$

 $\mathcal{U}^{\mathsf{YM}}\left(\Phi,\bar{\Phi}\right)$ models the free energy of a pure gauge theory \longrightarrow the parameters are fitted to the pure gauge lattice data

Previous potentials describe successfully the first order phase transition of the pure SU(3) Yang-Mills

 \hookrightarrow taking into account the gluon dynamics (quark polarization of gluon propagator) \longrightarrow QCD glue potential

 \hookrightarrow can be implemented by changing the reduced temperature

$$t_{glue} \equiv \frac{T - T_c^{glue}}{T_c^{glue}}, \quad t_{YM} \equiv \frac{T^{YM} - T_c^{YM}}{T_c^{YM}}$$

 $\begin{aligned} t_{\rm YM}(t_{\rm glue}) &\approx 0.57 t_{\rm glue} \\ \frac{\mathcal{U}^{\rm glue}}{T^4}(\Phi, \bar{\Phi}, t_{\rm glue}) &= \frac{\mathcal{U}^{\rm YM}}{(T^{\rm YM})^4}(\Phi, \bar{\Phi}, t_{\rm YM}(t_{\rm glue})) \\ & \text{L. M. Haas et al., PRD 87, 076004 (2013)} \end{aligned}$

Field equations for the order parameters

Hybrid approach: fermions at one-loop, mesons at tree-level \longrightarrow calculate Ω the grand canonical potential

 $\Omega(\mathcal{T}, \mu_{q}) = U_{\mathsf{meson}}^{\mathsf{tree}}(\langle \phi \rangle) + \Omega_{\bar{q}q}^{\mathsf{vac}} + \Omega_{\bar{q}q}^{\mathcal{T}}(\mathcal{T}, \mu_{q}) + \mathcal{U}^{\mathsf{glue}}(\Phi, \bar{\Phi}, t_{\mathsf{glue}}(\mathcal{T}))$

i.)
$$\frac{\partial \Omega}{\partial \bar{\sigma}_N} = \frac{\partial \Omega}{\partial \bar{\sigma}_S} \Big|_{\bar{\sigma}_N = \phi_N, \bar{\sigma}_S = \phi_S} = 0$$

 $m_0^2 \phi_N + \left(\lambda_1 + \frac{1}{2}\lambda_2\right) \phi_N^3 + \lambda_1 \phi_N \phi_S^2 - h_N + \frac{g_F}{2} N_c \left(\langle u\bar{u} \rangle_\tau + \langle d\bar{d} \rangle_\tau\right) = 0$ $m_0^2 \phi_S + \left(\lambda_1 + \lambda_2\right) \phi_S^3 + \lambda_1 \phi_N^2 \phi_S - h_S + \frac{g_F}{\sqrt{2}} N_c \langle s\bar{s} \rangle_\tau = 0$

$$\langle q\bar{q}\rangle_{\tau} = -4m_q \int \frac{d^3\mathbf{p}}{(2\pi)^3} \frac{1}{2E_q(p)} \left(1 - f_{\Phi}^{-}(E_q(p)) - f_{\Phi}^{+}(E_q(p))\right)$$

Introduction	The model	eLSM at finite T/μ_B	Results	Summary
00	00000000000	0000	000000000000	
Field equations				

Field equations for the Polyakov-loop variables

ii.)
$$\frac{\partial \Omega}{\partial \Phi} = \frac{\partial \Omega}{\partial \bar{\Phi}} \Big|_{\bar{\sigma}_N = \phi_N, \bar{\sigma}_S = \phi_S} = 0,$$

$$- \frac{d}{d\Phi} \left(\frac{U(\Phi, \bar{\Phi})}{T^4} \right) + \frac{2N_c}{T^3} \sum_{q=u,d,s} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \left(\frac{e^{-\beta E_q^-(p)}}{g_q^-(p)} + \frac{e^{-2\beta E_q^+(p)}}{g_q^+(p)} \right) = 0$$
$$- \frac{d}{d\bar{\Phi}} \left(\frac{U(\Phi, \bar{\Phi})}{T^4} \right) + \frac{2N_c}{T^3} \sum_{q=u,d,s} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \left(\frac{e^{-\beta E_q^+(p)}}{g_q^+(p)} + \frac{e^{-2\beta E_q^-(p)}}{g_q^-(p)} \right) = 0$$

$$g_{q}^{+}(p) = 1 + 3\left(\bar{\Phi} + \Phi e^{-\beta E_{q}^{+}(p)}\right) e^{-\beta E_{q}^{+}(p)} + e^{-3\beta E_{q}^{+}(p)}$$

$$g_{q}^{-}(p) = 1 + 3\left(\Phi + \bar{\Phi} e^{-\beta E_{q}^{-}(p)}\right) e^{-\beta E_{q}^{-}(p)} + e^{-3\beta E_{q}^{-}(p)}$$

$$E_q^{\pm}(p) = E_q(p) \mp \mu_B/3, \;\; E_{u/d}(p) = \sqrt{p^2 + m_{u/d}^2}, E_s(p) = \sqrt{p^2 + m_s^2}$$

Introduction 00	The model 00000000000	eLSM at finite T/μ_B	Results 000000000000	Summary
Meson masses				
Curvature	masses			

$$\begin{split} \mathscr{M}_{i,ab}^{2} &= \left. \frac{\partial^{2} \Omega(T, \mu_{f})}{\partial \varphi_{i,a} \partial \varphi_{i,b}} \right|_{\min} = m_{i,ab}^{2} + \Delta_{0} m_{i,ab}^{2} + \Delta_{T} m_{i,ab}^{2}, \\ m_{i,ab}^{2} &\longrightarrow \text{tree-level mass matrix,} \\ \Delta_{0/T} m_{i,ab}^{2} &\longrightarrow \text{fermion vacuum/thermal fluctuation,} \\ \Delta_{0} m_{i,ab}^{2} &= \left. \frac{\partial^{2} \Omega_{q\bar{q}}^{\text{vac}}}{\partial \varphi_{i,a} \partial \varphi_{i,b}} \right|_{\min} = -\frac{3}{8\pi^{2}} \sum_{f=u,d,s} \left[\left(\frac{3}{2} + \log \frac{m_{f}^{2}}{M^{2}} \right) m_{f,a}^{2(i)} m_{f,b}^{2(i)} + m_{f}^{2} \left(\frac{1}{2} + \log \frac{m_{f}^{2}}{M^{2}} \right) \right] \end{split}$$

$$\begin{split} \Delta_T m_{i,ab}^2 &= \left. \frac{\partial^2 \Omega_{q\bar{q}}^{\text{th}}}{\partial \varphi_{i,a} \partial \varphi_{i,b}} \right|_{\text{min}} \; = \; 6 \sum_{f=u,d,s} \int \frac{d^3 p}{(2\pi)^3} \frac{1}{2E_f(p)} \Big[\left(f_f^+(p) + f_f^-(p) \right) \left(m_{f,ab}^{2(i)} - \frac{m_{f,a}^{2(i)} m_{f,b}^{2(i)}}{2E_f^2(p)} \right) \\ &+ \; \left(B_f^+(p) + B_f^-(p) \right) \frac{m_{f,a}^{2(i)} m_{f,b}^{2(i)}}{2TE_f(p)} \Big], \end{split}$$

 $m_{f,ab}^{2(i)}$,

where $m_{f,a}^{2(i)} \equiv \partial m_f^2 / \partial \varphi_{i,a}$, $m_{f,ab}^{2(i)} \equiv \partial^2 m_f^2 / \partial \varphi_{i,a} \partial \varphi_{i,b}$

Determination of the parameters

14 unknown parameters $(m_0, \lambda_1, \lambda_2, c_1, m_1, g_1, g_2, h_1, h_2, h_3, \delta_S, \Phi_N, \Phi_S, g_F) \longrightarrow$ determined by the min. of χ^2 :

$$\chi^2(x_1,\ldots,x_N) = \sum_{i=1}^M \left[\frac{Q_i(x_1,\ldots,x_N) - Q_i^{\exp}}{\delta Q_i}\right]^2,$$

 $(x_1, \ldots, x_N) = (m_0, \lambda_1, \lambda_2, \ldots), Q_i(x_1, \ldots, x_N) \longrightarrow$ from the model, $Q_i^{exp} \longrightarrow PDG$ value, $\delta Q_i = \max\{5\%, PDG \text{ value}\}$ multiparametric minimalization $\longrightarrow MINUIT$

- PCAC \rightarrow 2 physical quantities: f_{π}, f_{K}
- Curvature masses \rightarrow 16 physical quantities:

 $\frac{m_{u/d}, m_s, m_{\pi}, m_{\eta}, m_{\eta'}, m_K, m_{\rho}, m_{\Phi}, m_{K^{\star}}, m_{a_1}, m_{f_1^H}, m_{K_1}, }{m_{a_0}, m_{K_s}, m_{f_0^L}, m_{f_0^H}}$

 Decay widths → 12 physical quantities: Γ_{ρ→ππ}, Γ_{Φ→KK}, Γ_{K*→Kπ}, Γ_{a1→πγ}, Γ_{a1→ρπ}, Γ_{f1→KK*}, Γ_{a0}, Γ_{KS→Kπ}, Γ_{f¹→ππ}, Γ_{f¹→KK}, Γ_{f⁰→ππ}, Γ_{f⁰→KK}
 Pseudocritical temperature T_c at mu_B = 0

Features of our approach

- D.O.F's: scalar, pseudoscalar, vector, axial vector nonets,
- Polyakov loop variables with $\mathcal{U}^{\mathsf{YM}}$ or $\mathcal{U}^{\mathsf{glue}}$
- constituent quarks
- Four order parameters $(\phi_N, \phi_S, \Phi, \overline{\Phi}) \longrightarrow$ four coupled T/μ_B -dependent equations
- Fermion vacuum fluctuations
- Fermion thermal fluctuations
- \bullet Fermion contributions to the tree-level meson masses \longrightarrow

curvature masses

• + Thermal π, K, f_0^L fluctuations for the pressure and other thermodynamical quantities

on The 000

The model 00000000000 eLSM at finite T/μ_B 0000

Results

Summary

Consequence of scalar mesons sector (below 2 GeV)

	Mass (MeV)	width (MeV)	decays
$a_0(980)$	980 ± 20	50 - 100	$\pi\pi$ dominant
$a_0(1450)$	1474 ± 19	265 ± 13	$\pi\eta$, $\pi\eta'$, K $ar{K}$
$K_s(800) = \kappa$	682 ± 29	547 ± 24	$K\pi$
$K_{s}(1430)$	1425 ± 50	270 ± 80	$K\pi$ dominant
$f_0(500) = \sigma$	400–550	400 - 700	$\pi\pi$ dominant
$f_0(980)$	980 ± 20	40 - 100	$\pi\pi$ dominant
$f_0(1370)$	1200–1500	200 - 500	$\pi\pipprox$ 250, $Kar{K}pprox$ 150
$f_0(1500)$	1505 ± 6	109 ± 7	$\pi\pipprox$ 38, $Kar{K}pprox$ 9.4
$f_0(1710)$	1722 ± 6	135 ± 7	$\pi\pipprox$ 30, $Kar{K}pprox$ 71

 \hookrightarrow We have 40 assignment possibilities!

Different parameterizations can give different thermodynamical behavior

T or t dependence of order parameters and masses

Condensates with high (1326 MeV) and low (402 MeV) scalar masses

Condensates and Polyakov loop variables with vacuum fluctuations

The model

eLSM at finite T/μ_B 0000

Results 0●00000000000 Summary

T or t dependence of order parameters and masses

Calculation of thermodynamical quantities

pressure:
$$p = \frac{\partial (T \ln Z)}{\partial V} = -\Omega$$

entropy density: $s = \frac{\partial p}{\partial T}$, quark number density: $\rho_q = \frac{\partial p}{\partial \mu_q}$
energy density: $\epsilon = -p + Ts + \mu_q \rho_q$, speed of sound: $c_s^2 = \frac{\partial p}{\partial \epsilon}$,

mesonic thermal 1-loop contribution to the pressure:

$$p_{
m meson} = -\Omega_{meson}^{1-
m loop,T} = -NT \int \frac{d^3p}{(2\pi)^3} \ln\left(1 - e^{-eta\omega(p)}
ight)$$

where, $\omega(p) = \sqrt{p^2 + m^2}$

to compare with the lattice \longrightarrow

subtracted condensate:
$$\Delta_{I,s} = \frac{\Phi_N - \frac{h_N}{h_S} \cdot \Phi_S|_T}{\Phi_N - \frac{h_N}{h_S} \cdot \Phi_S|_{T=0}}$$

scaled interaction measure: $I/T^4 = (\epsilon - 3p)/T^4$

The model

eLSM at finite T/μ_B 0000

 Summary

T or t dependence of order parameters and masses

T dependence of masses, condensates, mixing angles

The model

eLSM at finite T/μ_B 0000

Results 00000000000 Summary

T or t dependence of order parameters and masses

Temperature dependence of the η , η' sector

The model

eLSM at finite T/μ_B 0000

 Summary

T or t dependence of order parameters and masses

The subtracted condensate for different U's

The model

eLSM at finite T/μ_B 0000

Results 00000●000000 Summary

T or t dependence of order parameters and masses

Polyakov loop variables for different U's

Pressure and derived quantities

Normalized pressure and the effects of meson contributions $(T_{glue} = 270 MeV)$

Pressure and derived quantities

Normalized pressure and the effects of different U's

Introduction	The model	eLSM at finite ${\cal T}/\mu_B$	Results	Summary
			0000000000000	
Pressure and derived quantities				

Scaled interaction measure

Introduction	The model	eLSM at finite T/μ_B	Results	Summary
			00000000000000	

Pressure and derived quantities

Speed of sound and p/ϵ

 Introduction
 The model
 eLSM at finite T/μ_B Results
 Summary

 00
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

CEP and its variation with the f_0^L mass

Introduction 00	The model	eLSM at finite T/μ_B 0000	Results 00000000000	Summary
Summary				

- Thermodynamics of a vector meson extended Polyakov quark meson was investigated
- We used a hybrid approach: fermion vacuum/thermal fluctuations (assumption: gives the largest contribution), bosons at tree-level (except in pressure and such)
- We investigated the 40 possible scalar parameterization scenarios
- At finite T/μ_B there was 4 coupled equations for the 4 order parameters
- Various thermodynamical quantities were calculated, which show quiet good agreement with lattice results, if we use the improved Polyakov potential
- Model can be used to give predictions at finite densities (masses, decay widths, thermodynamical quantities)

Introduction 00	The model 0000000000	eLSM at finite T/μ_B 0000	Results 00000000000	Summary

Thank you for your attention!