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⋆ 15th Zimány winter school on heavy ion physics
Budapest, Hungary, 7. – 11. December 2015.

a
Physics Department, University of Zagreb, Croatia

Is the η–η′
complex an ordinary two-state system?

⋆
– p. 1/38



1. Introduction = QUESTION:

Do η and η′ always obey von Neumann–Wigner
anticrossing theorem? It states: If a Hermitian matrix represents

an observable for a system and depends on continuous real parameters,

its eigenvalues cannot cross as any of the parameters vary.

In a two-state (two-level) system, it is easy to see the avoided crossing of

the levels, as the eigenvalues of the 2x2 Hamiltonian matrix Ĥ are

E± =
1

2
(H11 +H22)±

1

2

√
(H11 −H22)2 + 4|H12|2 .

Thus E± obey E+ > E− for all parameter values if the transition matrix element H12 6= 0.

⇒ If they form a two-level system, any description of η and η′ through their

2x2 mass matrix should also exhibit this property regarding their masses.

However, functional renormalization group (FRG) approach in a

quark-meson truncation indicates that the assignment Mη′ > Mη

changes as the UA(1) breaking is turned off.

⇒ Re-examine η & η′ being coupled in a standard two-level system
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Mass matrices in ηNS-ηS or η8-η0 basis - diagonalize to get Mη , Mη′


 M2

ηNS
M2

ηSηNS

M2
ηNSηS

M2
ηS


 or


 M2

η8
M2

η8η0

M2
η0η8

M2
η0


 diagonalize−→


 M2

η 0

0 M2
η′
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← This was enlarged anticrossing when Mη′(T ) is dominated by χYM(T )/f2
π(T )

but, just to show anticrossing better! Experiment EXCLUDED this scenario for Mη′(T )

(for T → TChiral) [Horvatić&al, PRD76 (2007) 0960]:

0.05 0.1 0.15 0.2
T@GeVD

0.2

0.4

0.6

0.8

1

1.2

1.4

MP@GeVD, Tc=128.MeV

Η

Η’

Π

K

ss
��

ΗS

ΗNS

2ΠT

Is the η–η′
complex an ordinary two-state system?

⋆
– p. 4/38



In the FRG approach to the quark-meson truncation [Mitter & Schaefer, PRD89 (2014) 054027]:

the UA(1) breaking implemented in the effective Lagrangian through

the ’t Hooft determinantal interaction ξ with the coupling strength c:

c ξ = c
(
det [Σ] + det

[
Σ†]) , where Σ = T a (σa + iπa)

First panel: c 6= 0 necessary for the empirical, very large mass of η′:
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Second panel: no UA(1) breaking, due to c = 0. η changed little, but η′ is

now degenerate with π, i.e., lighter than η [see Weinberg PRD11 (1975) 3583].

Thus, varying of the coupling parameter c between 0 and its

phenomenological value would lead to level crossing for any T .
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2. Why η0 ≈ η′ has an anomalous piece of mass:

UA(1) symmetry is broken by nonabelian ("gluon") axial
anomaly: even in the chiral limit (ChLim, where mq → 0),

∂αψ̄(x)γ
αγ5

λ0

2
ψ(x) ∝ F a(x) · F̃ a(x) ≡ ǫµνρσF a

µν(x)F
a
ρσ(x) 6= 0 .

This breaks the UA(1) symmetry of QCD and precludes the

9th Goldstone pseudoscalar meson⇒ very massive η′:
even in ChLim, where mπ,mK ,mη → 0, still (‘ChLim WVR’)

0 6= ∆M2
η0 = ∆M2

η′ =
(A = qty.dim.mass)4

(“fη′”)2
=

6χYM
f2π

+O(
1

Nc
)

Out of ChLim : Mη′2+Mη
2−2MK

2 =
2Nf

f2π
χYM

(
+O(

1

Nc
)

)
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Anomalous part of η0 mass: ∆M 2
η0
= χYM

2Nf

f2
π
+O( 1

Nc
)

Except η-η′, pseudoscalars are qualitatively understood at T = 0 and

T > 0, e.g., in the qq̄ bound-state Dyson-Schwinger (DS) approach

QCD chiral behavior (reproduced by DS approach) of the
non-anomalous parts of masses of light qq̄′ pseudoscalars

(i.e., all parts except ∆Mη0 ) : M2
qq̄′ = const (mq +mq′), (q, q′ = u, d, s) .

⇒ non-anomalous parts of the masses in WVR cancel:

Mη′2 +Mη
2 − 2MK

2 ≈ ∆Mη0
2 , approx. as in ChLim WVR

χ =

∫
d4x 〈0|Q(x)Q(0)|0〉 , Q(x) =

g2

64π2
ǫµνρσF

a
µν(x)F

a
ρσ(x)

Q(x) = topological charge density operator

In WV rel., χ is not the one of the full QCD with quarks,
but the pure-glue, YM one, χYM ↔ χquenched.
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An illustration of ’non-anomalous’ meson M’s(T ) by simple ’separable’ DS model:
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3. Should η and η′ really form a two-state system?

Pseudoscalar mesons of light quarks q = u, d, s are (almost)

Goldstone bosons of DChSB, so for mu,d,s → 0 also vanishing meson

masses2 M2

ud̄
= M2

π+ ,M2
us̄ = M2

K , ..., M̂2
NA = diag(M2

uū,M
2

dd̄
,M2

ss̄)

QCD chiral behavior reproduced correctly by Dyson-Schwinger-

Bethe-Salpeter approach (DS) – except anomalously heavy η′ !

|ud̄〉 = |π+〉, |us̄〉 = |K+〉, ... but |uū〉, |dd̄〉 and |ss̄〉 do not correspond

to any physical particles (at T = 0 at least!), although in the isospin

limit (adopted from now on) Muū = Mdd̄ = Mud̄ = Mπ. I = good

Q.no. ⇒ recouple into "more physical" I3 = 0 octet-singlet basis

I = 1 |π0〉 =
1√
2
(|uū〉 − |dd̄〉) ,

but I = 0 |η8〉 =
1√
6
(|uū〉+ |dd̄〉 − 2|ss̄〉) ≈ |η〉 mixeswith

I = 0 |η0〉 =
1√
3
(|uū〉+ |dd̄〉+ |ss̄〉) ≈ |η′〉 ...too heavy forGB .
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Physical η and η′ must have a diagonal mass matrix

the “non-anomalous” (chiral-limit-vanishing!) part of the
mass-squared matrix of π0 and η’s is (in π0-η8-η0 basis)

M̂2
NA =




M2
π 0 0

0 M2
88 M2

80

0 M2
08 M2

00




diagonalization

=⇒
UA(1) problem




M2
π 0 0

0 M2
π 0

0 0 M2
ss̄




M2
88 ≡ 〈η8|M̂2

NA|η8〉 =
2

3
(M2

ss̄+
1

2
M2

π), M2
00 ≡ 〈η0|M̂2

NA|η0〉 =
2

3
(
1

2
M2

ss̄+M2
π),

M2
80 ≡ 〈η8|M̂2

NA|η0〉 = M2
08 =

√
2

3
(M2

π −M2
ss̄)

What reproduces Mπ & MK cannot also Mη = 548 & Mη′ = 958 MeV!

M̂2
NA not enough! To avoid the UA(1) problem, one

must break the UA(1) symmetry (as it is destroyed by
the gluon anomaly) at least at the level of the masses.
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Gluon anomaly is not accessible to ladder approximation

All masses in M̂2
NA are calculated in the ladder approx.,

which cannot include the gluon anomaly contributions.

Large Nc: the gluon anomaly suppressed as 1/Nc! →
Include its effect just at the level of masses: break the
UA(1) symmetry and avoid the UA(1) problem by shifting
the η0 (squared) mass by anomalous contribution 3β.

complete mass matrix is then M̂2 = M̂2
NA + M̂2

A where

M̂2
A =




0 0 0

0 0 0

0 0 3β


 does not vanish in the chiral limit.

3β = ∆M2
η0 = the anomalous mass2 of η0 [in SU(3) limit incl.

ChLim] is related to the YM topological susceptibility. Fixed
by phenomenology or (here) taken from the lattice.
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Transitions related to the UA(1) anomaly

Transitions between hidden flavors |qq̄〉 → |q′q̄′〉
(q, q′ = u, d, s)

 P

f

f 
–

f´

f´
–

P´

Diamond graph: just the simplest example of a transition |qq̄〉 → |q′q̄′〉
(q, q′ = u, d, s), contributing to the anomalous masses in the η-η′

complex, but not included in the interaction kernel in the ladder

approximation.
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Anomaly & flavor breaking conspire to make η ≈ η8 and η′ ≈ η0:

rewrite the anomalous part M̂2
A in the qq̄ basis |uū〉, |dd̄〉, |ss̄〉:

M̂2
A = β




1 1 1

1 1 1

1 1 1




flavor

−→
breaking

M̂2
A = β




1 1 X

1 1 X

X X X2




We introduced effects of the flavor breaking on the anomaly-induced
transitions |qq̄〉 → |q′q̄′〉 (q, q′ = u, d, s): ss̄ transition suppression is

estimated by X ≈ fπ/fss̄ < 1. Then, M̂2
A in the octet-singlet basis is

M̂2
A = β




0 0 0

0 2
3
(1−X)2

√
2

3
(2−X −X2)

0
√
2

3
(2−X −X2) 1

3
(2 +X)2




π0 remains decoupled⇒ can restrict to 2× 2 submatrix of the etas.

Off-diagonal elements reduced by
√
2

3
(2−X −X2) in the complete

mass matrix M̂2 = M̂2
NA + M̂2

A≈ roughly diagonal in the η8-η0 basis!
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Mass matrix and mixing in NS–S basis

nonstrange (NS) – strange (S) basis:

|ηNS〉 =
1√
2
(|uū〉+ |dd̄〉) = 1√

3
|η8〉+

√
2

3
|η0〉 ,

|ηS〉 = |ss̄〉 = −
√

2

3
|η8〉+

1√
3
|η0〉 .

the η–η′ mass matrix in this basis:

M̂2 =


 M2

ηNS
M2

ηSηNS

M2
ηNSηS

M2
ηS


 =


 M2

uū + 2β
√
2βX

√
2βX M2

ss̄ + βX2


 φ→


 M2

η 0

0 M2
η′




NS–S mixing relations – states rotation diagonalizing M̂2 :

|η〉 = cosφ|ηNS〉 − sinφ|ηS〉 , |η′〉 = sinφ|ηNS〉+ cosφ|ηS〉 .

θ = φ− arctan
√
2
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Finally, fix anomalous contribution to η-η′:

Equal traces of diagonalized & non-diagnlz. M̂2 demand 1st eqality in

β(2+X2) =M2
η+M

2
η′−2M2

K =
2Nf

f2π
χYM (2ndequality = WV rel.)

requiring that the experimental trace (M2
η +M2

η′)exp

≈1.22 GeV2 be reproduced by the theoretical M̂2, yields

βfit =
1

2+X2 [(M2
η +M2

η′)exp − (M2
uū +M2

ss̄)]

Or, get β from lattice χYM ! Then no free parameters!

then, can calculate the NS-S mixing angle φ

tan 2φ =
2M2

ηSηNS

M2
ηS

−M2
ηNS

=
2
√
2βX

M2
ηS

−M2
ηNS

and

M2
ηNS

=M2
uū+2β =M2

π+2β, M2
ηS =M2

ss̄+βX
2 =M2

ss̄+β
f2π
f2ss̄
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Physical η, η′ eigenmasses – of the two-level type:

The diagonalization of the NS-S mass matrix then gives

M2
η = cos2 φ M2

ηNS
−M2

ηSηNS
sin 2φ+ sin2 φ M2

ηS
(note M2

ηSηNS
=
√
2βX)

M2
η′ = sin2 φ M2

ηNS
+M2

ηSηNS
sin 2φ+ cos2 φ M2

ηS

Equivalently, secular determinant⇒ the eigenvalues of 2×2 matrix:

M2
η =

1

2

[
M2

ηNS
+ M2

ηS
−
√

(M2
ηNS
− M2

ηS
)2 + 4M4

ηSηNS

]

=
1

2

[
M2

π +M2
ss̄ + β(2+X2)−

√
(M2

π+2β−M2
ss̄−βX2)2 + 8β2X2

]

M2
η′ =

1

2

[
M2

ηNS
+ M2

ηS
+
√

(M2
ηNS
− M2

ηS
)2 + 4M4

ηSηNS

]

=
1

2

[
M2

π +M2
ss̄ + β(2+X2) +

√
(M2

π+2β−M2
ss̄−βX2)2 + 8β2X2

]

This exhibits the Goldstone-b. character of η in ChLim & degeneracy with π in SU(3) limit
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Separable model results on η and η′ at T = 0

βfit βlatt. Exp.

θ -12.22◦ -13.92◦

Mη [MeV] 548.9 543.1 547.75

Mη′ [MeV] 958.5 932.5 957.78

X 0.772 0.772

3β [GeV2] 0.845 0.781

X = fπ/fss̄ as well as the whole M̂2
NA (consisting of Mπ and Mss̄)

are calculated model quantities.

βlatt. was obtained from χYM(T = 0) = (175.7 MeV)4

But is an extension to high T possible, as there is a large mismatch

of characteristic temperature scales of the pure-gauge YM (Tc ∼ 270

MeV) vs. full QCD (Tc ∼ 160 MeV) with quarks?

Concretely in WVR, χYM is more T -resistant than QCD quantities

Mη,η′,K and fπ. Does WVR become unusable as T approaches the

(pseudo-)critical temperatures of full QCD, such as T ∼ TCh?

Is the η–η′
complex an ordinary two-state system?

⋆
– p. 17/38



Scenario that 2NfχYM(T )/f2
π(T ) dominates Mη′ excluded, but actually only for T → TChiral

[Horvatić&al, PRD76 (2007) 0960]:

0.05 0.1 0.15 0.2
T@GeVD

0.25

0.5

0.75

1

1.25

1.5

MP@GeVD, Tc=128.MeV

Η

Η’

Π

K

ss
��

Η0

Η8

2ΠT

Clash with phenomenology removed by another relation connecting YM and QCD!
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Shore’s generalization of WV valid to all orders in 1/Nc

WV rel. – lowest order in 1/Nc – improved like this:

(f0η′)2M2
η′ + (f0η )

2M2
η = 1

3

(
f2πM

2
π + 2f2KM

2
K

)
+ 6A (1)

f0η′f8η′M2
η′ + f0η f

8
ηM

2
η = 2

√
2

3

(
f2πM

2
π − f2KM2

K

)
(2)

(f8η′)2M2
η′ + (f8η )

2M2
η = − 1

3

(
f2πM

2
π − 4f2KM

2
K

)
(3)

A is the full QCD topological charge parameter (replacing χYM in

WV)

A =
χ

1 + χ( 1

〈ūu〉mu
+ 1

〈d̄d〉md
+ 1

〈s̄s〉ms
)

(4)

= seemed hard to calculate on lattice (maybe easier today?) ...

However, it is known that A =χYM +O( 1
Nc

) (at T = 0)
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Approximating the full QCD topological charge parameter A

Replacing 3 different condensates by the chiral one, 〈q̄q〉0,
reduces the full QCD topological charge A (4) to the
combination χ̃ on the RHS of Leutwyler-Smilga relation:

χYM =
χ

1+ χ
〈q̄q〉0

∑

q=u,d,s

1
mq

→ χ̃(T, µ) =
〈q̄q(T, µ)〉0∑

q=u,d,s

1
mq

+ corr′s ≈ A(T, µ)

because of Di Vecchia-Veneziano result for small mq :

χ = − m 〈q̄q〉0
Nf

+ corrections(m) ,

(Previously, we only conjectured χYM(T ) → χ̃(T ) [Benić& al, Phys.Rev.D84 (2011)016006].)

⇒ The quark condensates 〈q̄q(T, µ)〉, and not the pure-gauge
quantity χYM, determine the T (and µ) dependence of (partial)
restoration of UA(1). ⇒ Linked with the chiral restoration!
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T -dependence of χ and χ̃

Extending the light-quark full-QCD topol. susceptibility
χ is somewhat uncertain, as there is no guidance from
lattice [unlike for χYM(T )].

The leading term in Di Vecchia-Veneziano relation
∝ 〈q̄q〉0(T ) very plausibly, but for the correction term we
have to explore a range of Ansätze, i.e.,

χ(T ) = −m 〈q̄q〉0(T )
Nf

+ C(m)

[
〈q̄q〉0(T )
〈q̄q〉0(T = 0)

]δ
, (0 ≤ δ < 2).

Then, χ̃(T ) =

=
〈q̄q〉0(T )

∑
q=u,d,s

(
1
mq

)



1− 〈q̄q〉0(T )

∑
q=u,d,s

(
1
mq

) 1

C(m)

[
〈q̄q〉0(T = 0)

〈q̄q〉0(T )

]δ


 .
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Chiral condensate 〈qq̄〉0(T ) and resulting χ̃(T )
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Case 1: T -independent correction term in χ
[Benić, Horvatić, Kekez and Klabučar, Phys. Rev. D 84 (2011) 016006.]
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Case 2: Strongly T -dependent correction term ∝ 〈q̄q〉0(T )
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T -dependence of the NS-S mixing angle φ(T )
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the chiral condensate (δ = 1), and for two values of χ̃(T = 0) = χYM .
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A functional renormalization group (FRG) approach

[M. Mitter & B. J. Schaefer, Phys. Rev. D 89 (2014) 5, 054027]: Axial anomaly & chiral

symmetry investigated by a FRG approach in a three flavor quark-meson truncation.

Chiral order parameters: quark condensates 〈q̄q〉 related via bosonization to vacuum

expectation values of the scalar-isoscalar mesonic fields σx,y = σNS,S :

〈Σ〉 = diag(〈σx〉/2, 〈σx〉/2, 〈σy〉/
√
2)
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In the FRG approach to the quark-meson truncation, condensates dominate UA(1) breaking

The UA(1) breaking implemented in the effective Lagrangian through

the ’t Hooft determinantal interaction ξ with the coupling strength c:

c ξ = c
(
det [Σ] + det

[
Σ†]) , where Σ = T a (σa + iπa)

First panel: c 6= 0 contributes to good agreement with the present data:
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Second panel: no UA(1) breaking, due to c = 0. η changed little, but η′ is

now degenerate with π, i.e., lighter than η.

Thus, varying of the coupling parameter c between 0 and its

phenomenological value would lead to level crossing for any T .
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In between FRG & mass matrix: linear Σ-model with quarks, Polyakov loop & (axi-)vector mesons:

Larger drop in Mη′ , but a smaller one also in Mη, in the preliminary results

by P. Kovacs, Z. Szep and G. Wolf, J. Phys. Conf. Ser. 599 (2015) 1, 012010
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... should be examined for possible crossing (?) in the UA(1)
limit ...
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4. Discussion and Summary

• It is clear that crossing of the Mη and Mη eigenvalues cannot happen IF the traditional

description through the 2× 2 η-η′ mass matrix is not flawed.

• The general condition enabling crossings of eigenvalues is belonging to different

irreducible representations of the pertinent symmetry group. Then, the possible objection

here is that the assumption of nonet symmetry was used in forming this matrix for the two

states, the SU(3) octet member η8, and the SU(3) singlet η0. However, what is then missing

is a conserved quantity which would prevent the mixing of the isoscalars η8 and η0 – such as

strangeness, charge and (approx.) isospin, preventing the mixing of etas with K ’s and π’s.

• Besides, the usage of nonet symmetry is founded in the regime without UA(1) symmetry

breaking. On the other hand, we saw that the presence of this breaking was needed for an

approximate identification of η with η8 described by GMO formula, which is needed for

claiming that Weinberg’s argument cannot pertain to η.

• Conclusion: the η–η′ complex remains an ordinary two-level system, while the mass

crossing seemingly exhibited by a FRG approach in a quark-meson truncation is probably an

artifact of this level of truncation (which, however, can be systematically improved).

• Besides the main issue of (anti)crossing, I presented the results of the model where the

mass contribution of the axial anomaly is expressed through qq̄ condensates, and thus

diminishes as the chiral symmetry is restored. The excessive drop of Mη already at

T → TChiral is the consequence of the exclusive usage of the chiral qq̄ condensate and will

be mended by using massive qq̄ condensates.
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Additional slides

On Shore’s generalization of WV relation

and
its combining with the
Feldmann–Kroll–Stech (FKS) scheme
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η′ and η have 4 independent decay constants

f0η′, f8η , f
0
η , f

8
η′ : 〈0|Aa µ(x)|P (p)〉 = ifaP p

µe−ip·x, a = 8, 0; P = η, η′ .

Equivalently, one has 4 related but different constants fNS
η′ , fNS

η , fS
η , fS

η′ if instead of

octet and singlet axial currents (a = 8, 0) one takes this matrix element of the

nonstrange-strange axial currents (a = NS , S )

Aµ
NS

(x) =
1√
3
A8µ(x) +

√
2

3
A0µ(x) =

1

2

(
ū(x)γµγ5u(x) + d̄(x)γµγ5d(x)

)
,

Aµ
S
(x) = −

√
2

3
A8µ(x) +

1√
3
A0µ(x) =

1√
2
s̄(x)γµγ5s(x) ,


 fNS

η fS
η

fNS
η′ fS

η′


 =


 f8

η f0
η

f8
η′ f0

η′






1√
3

−
√

2
3√

2
3

1√
3


 ,

a, P = NS, S : 〈0|Aµ
NS

(x)|ηNS(p)〉 = ifNS pµe−ip·x , 〈0|Aµ
NS

(x)|ηS(p)〉 = 0 ,

a, P = NS,S : 〈0|Aµ
S
(x)|ηS(p)〉 = ifS pµe−ip·x , 〈0|Aµ

S
(x)|ηNS(p)〉 = 0 ,

Note: in a DS approach, fNS = fuū = fdd̄ = fπ , fS = fss̄ are calculated quantities
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Two Mixing Angles and FKS one-angle scheme

Any 4 η-η′ decay constants conveniently parametrized
in terms of two decay constants and two angles:

f8
η = cos θ8 f8 , f0

η = − sin θ0 f0 , fNS
η = cosφNS fNS , fS

η = − sinφS fS ,

f8
η′ = sin θ8 f8 , f0

η′ = cos θ0 f0 , fNS
η′ = sinφNSfNS , fS

η′ = cosφSfS

Big practicaldifference between 0-8 and NS-S schemes:

while θ8 and θ0 differ a lot from each other and from
θ ≈ (θ8 + θ0)/2, FKS showed that φNS ≈ φS ≈ φ.

[
fNS
η fS

η

fNS
η′ fS

η′

]
=

[
cosφ − sinφ

sinφ cosφ

][
fNS 0

0 fS

]
.
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For four decay constants, can use FKS one-angle scheme!

φ relates {f8η , f8η′ , f0η , f
0
η′} with {fNS , fS}= {fπ, fss̄}:

[
f8η f0η
f8η′ f0η′

]
=

[
cosφ − sinφ

sinφ cosφ

][
fNS 0

0 fS

]


1√
3

√
2
3

−
√

2
3

1√
3




Some other useful relations between quantities of NS-S
(FKS) and 0-8 schemes:

f8 =

√
1

3
f2NS +

2

3
f2S , θ8 = φ− arctan

(√
2fS

fNS

)
,

f0 =

√
2

3
f2NS +

1

3
f2S , θ0 = φ− arctan

(√
2fNS

fS

)
.
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Solve numerically Shore’s Eqs. (1)-(3) for Mη′, Mη, and φ:

Inputs: Mπ,MK , fπ = fNS, fss̄ = fS and fK , calculated in 3 different DS models

χYM 1914 175.74 1914 175.74 1914 175.74

Mη 499.8 485.7 496.7 482.8 526.2 507.0

Mη′ 931.4 815.8 934.9 818.4 983.2 868.7

φ 52.01◦ 46.11◦ 51.85◦ 46.07◦ 47.23◦ 40.86◦

θ −2.72◦ −8.62◦ −2.89◦ −8.67◦ −7.51◦ −13.87◦

θ0 7.74◦ 1.84◦ 7.17◦ 1.39◦ −0.33◦ −6.69◦

θ8 −12.00◦ −17.90◦ −11.85◦ −17.6◦ −14.12◦ −20.47◦

f0 108.8 108.8 107.9 107.9 101.8 101.8

f8 122.6 122.6 121.1 121.1 110.7 110.7

f0
η -14.7 -3.5 -13.5 -2.6 0.6 11.9

f0
η′ 107.9 108.8 107.1 107.9 101.8 101.1

f8
η 119.9 116.7 118.5 115.4 107.4 103.7

f8
η′ -25.5 -37.7 -2.49 -37.6 -27.0 -38.7

(in D. Horvatić et al., Eur. Phys. J. A 38 (2008) 257.) Mη,η′ and f ’s in MeV,

χYM is in MeV4.
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The same is now reproduced analytically:

Eqs. (1)-(3)⇒ two closed-form solutions for Mη, Mη′

and tanφ in terms of fπ, fss̄,Mπ, MK and A.
The set reproducing the previous numerical results is:

tanφ =
−2Af2π + 4Af2ss̄ − 2f2Kf

2
πM

2
K + f4πM

2
π + f2πf

2
ss̄M

2
π +∆

4
√
2Afπ fss̄

M2
η,η′ =

2Af2π + 4Af2ss̄ + 2f2Kf
2
πM

2
K − f4πM2

π + f2πf
2
ss̄M

2
π ∓∆

2f2πf
2
ss̄

where ∆2 =

32A2 f2πf
2
ss̄+

{
2A(f2π − 2f2ss̄) + f2π

[
2f2KM

2
K − (f2π + f2ss̄)M

2
π

]}2

[Benić, Horvatić, Kekez & Klabučar, Phys. Lett. B738 (2014) 113]
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Find matrix elem’s in NS-S basis from these Mη,Mη′, φ:

M2
ηNS
≡M2

NS = cos2 φM2
η + sin2 φM2

η′

M2
ηS ≡M2

S = sin2 φM2
η + cos2 φM2

η′

M2
ηNSηS ≡M2

NSS = sinφ cosφ (M2
η −M2

η′)

to use M2
η,η′ =

1

2

[
M2

NS +M2
S ∓

√
(M2

NS
−M2

S
)2 + 4M4

NSS

]

Mathematica leads to surprisingly simple results:

M2
NS = M2

π +
4A

f2π
, M2

NSS =
2
√
2A

fπfss̄

M2
S =

1

f2ss̄
[2 f2K M2

K − f2π M
2
π ] +

2A

f2ss̄
= M2

ss̄ +
2A

f2ss̄

f2π M
2
π = −mu〈uū〉−md〈dd̄〉 and f2K M2

K = −mu〈uū〉−ms〈ss̄〉
⇒ 2 f2K M2

K − f2π M
2
π = f2ss̄M

2
ss̄ "eq. (23)"
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Compare MNS,MNSS and MS with NS-S mass matrix:

[
M2

NS M2
NSS

M2
NSS M2

S

]
=

[
M2

π + 2β
√
2βX√

2βX M2
ss̄ + βX2

]

⇒ Very similar formulas in WV case and "Shore case":

1.) βWV =
6χYM

f2π(2 +X2)
, βShore+FKS =

2A

f2π
≈ 2χYM

f2π

Explains why Shore’s scheme needs higher values of χYM

than WV, to approach empirical masses.

2.) X =
fπ
fss

the SAME in the both WV and Shore cases ...

... but in the "Shore case", it follows from equations! Before,
incl. WV, it was an input – estimate, educated guess.
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T -dependence of pseudoscalar decay constants
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