NEW PHENIX DIELECTRON RESULTS IN AU+AU COLLISIONS

Mihael Makek (University of Zagreb) for the PHENIX Collaboration

Zimanyi School, Budapest, 2015

Outline

- Introduction
- The Hadron Blind Detector
- Analysis
 - Electron identification
 - Background subtraction
 - Cocktail of hadronic sources
- Results
- Comparison to model
- Summary

Dileptons

Known sources of dielectrons at $\sqrt{s_{_{NN}}} = 200 \,\text{GeV}$

- Dalitz decays of π^0 , η , η' , ω
- Direct decays of ho, ω, ϕ
- Charm (beauty) production
- Drell-Yan
- Modifications to the dilepton spectrum due to the QCD phase transition:
 - Change in the spectral shape of light vector mesons related to chiral symmetry restoration
 - Continuum enhancement related to QGP thermal radiation
 - Medium effects on hard probes Heavy flavor energy loss

Base-line measurements: p+p and d+Au

Dileptons in PHENIX

PHENIX dielectrons in Au+Au (2004 measurement)

PRC 81, 034911(2010)

Mihael Makek

In RHIC Run-4 PHENIX observed a large e^+e^- enhancement in the low mass region

- Could not be explained by the models
- S/B background ratio ~1/200 in Min.Bias
- Hadron contamination ~25% in Min. Bias

STAR observed much smaller enhancement (RHIC Run-10) PRL113 022301 (2014)

- A new PHENIX measurement in RHIC Run-10 with the Hadron Blind Detector to:
 - Reduce the hadron contamination
 - Improve the signal sensitivity

5

The Hadron Blind Detector

- Cherenkov detector using GEMs with Csl photocathode and CF₄ in a windowless configuration
 - Provides hadron rejection
 - Adds to elD capabilites
 - Suppresses bckg. e^+e^- pairs from π^0 Dalitz and γ conversions by their opening angle
 - Operates in magnetic field free region

NIM A646, 35-58 (2011)

Analysis Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV RHIC Run-10

Electron identification

Background subtraction

Cocktail of hadronic sources

Mihael Makek

Electron identification with neural networks

- □ RICH
- EMCAL
- □ HBD
- □ TOF
 - EMCAL
 - TOFE

Electron identification with neural networks

- EMCAL
- HBD
- □ TOF
 - EMCAL
 - TOFE

Total 14 eID parameters:

- Use as inputs to neural networks
- NNs trained and monitored by simulations

Example NN output for 0-10% centrality

□ Achieve electron sample purity for all centralities $\geq 95\%$

Analysis

Electron identification

Background subtraction

Cocktail of hadronic sources

Mihael Makek

Background subtraction

Strategy – subtract component by component:

Traditional approach:

Total BG = mixed BG

+ jet pairs

+ cross-pairs

combinatorial

correlated

ightarrow could not reproduce the shape of the like-sign foreground

ightarrow essential elements missing

Background subtraction

Strategy – subtract component by component:

- Traditional approach: Total BG = mixed BG
 - + jet pairs + cross-pairs

combinatorial

correlated

ightarrow could not reproduce the shape of the like-sign foreground

 \rightarrow essential elements missing

New approach:

Total BG = mixed BG with flow modulation combinatorial + jet pairs + cross-pairs + e-h pairs

Mixed background with flow modulation

- Flow distorts the shape of the combinatorial background
 - To correct for the flow effect, each mixed BG pair is weighted by an analytic factor:

$$w(\Delta \phi) = 1 + 2 v_2(p_{T,1}) v_2(p_{T,2}) \cos(2\Delta \phi)$$

- Inclusive single electron v₂ from the data
- The approach is verified by the simulation (plots on the left)
- The weighting method reproduces correctly the combinatorial background shape

Cross-pairs and jet pairs

- Simulated with EXODUS: $\pi^{0} \rightarrow e^{+}e^{-\gamma}, \pi^{0} \rightarrow \gamma\gamma$ and $\eta \rightarrow e^{+}e^{-\gamma}, \eta \rightarrow \gamma\gamma$
- Normalization: absolute
 - $\hfill \pi^0$ and η measured by PHENIX

Cross-pairs and jet pairs

- Simulated with EXODUS: $\pi^{0} \rightarrow e^{+}e^{-}\gamma, \pi^{0} \rightarrow \gamma\gamma$ and $\eta \rightarrow e^{+}e^{-}\gamma, \eta \rightarrow \gamma\gamma$
- Normalization: absolute
 - $\hfill \hfill \pi^0$ and η measured by PHENIX
- Simulated with PYTHIA (p+p jets)
- Normalization: absolute
 - Each ee pair scaled by:

 $N_{coll} * R_{AA} (p_T^{a}) * I_{AA} (p_T^{b}, \Delta \phi)$

- **\mathbf{P}_{\mathsf{T}}** and $\Delta \phi$ refer to primary particles
- $a the particle with the higher p_T, b the particle with the lower p_T$
- R_{AA} and I_{AA} from PHENIX measurements

e-h pairs

- RICH spherical mirror causes hit sharing of parallel tracks
- Direct e-h correlations, e.g. e⁺h⁻, can be detected by hit proximity and rejected
 - Indirect correlations, e.g. e⁻h⁻
 cannot be detected → they are
 simulated and subtracted
- Normalization: absolute using PHENIX dN/dy of pions

Mixed background normalization

Like-sign mixed BG normalization:

G_{++} = Cross_{++} + Jet_{++} + e-h_{++} + bb_{++} + nf_{++} * mixBG_{++}

FG__ = Cross__ + Jet__ + e-h__ + bb__ + nf_{-} * mixBG__

- All correlated components calculated on absulute terms
- □ \mathbf{nf}_{++} and \mathbf{nf}_{-} are determined as the fit parameters in the pair opening angle ($\Delta \phi_0$) region where the correlated backgrounds are smallest
- □ Unlike-sign normalization: $\mathbf{nf}_{+-} = \sqrt{\mathbf{nf}_{++}} \cdot \mathbf{nf}_{--}$

Quantitative understanding of the background

- Understanding of the background verified by the like-sign spectra
 - Correlated components absolutely normalized
 - Combinatorial background mixed background with flow modulation
- The ratio of the like-sign foreground to total background, for m_{ee}>0.15 is flat at 1
- Excellent quantitative understanding of the background

Quantitative understanding of the background

- Understanding of the background verified by the like-sign spectra
 - Correlated components absolutely normalized
 - Combinatorial background mixed background with flow modulation
- The ratio of the like-sign foreground to total background, for m_{ee}>0.15 is flat at 1
- Excellent quantitative understanding of the background

arXiv:1509.04667

Electron identification

Background subtraction

Cocktail of hadronic sources

Mihael Makek

Cocktail of hadronic sources

- Dielectron and Dalitz decay of mesons simulated with EXODUS
 - π⁰ parametrized using modified Haggedorn function
 - Other mesons(η, ω, ρ, φ, J/Ψ): use m_T scaling for the shape and meson to π⁰ ratio at high p_T for absolute normalization

Cocktail of hadronic sources

- Dielectron and Dalitz decay of mesons simulated with EXODUS
 - π⁰ parametrized using modified Haggedorn function
 - Other mesons(η, ω, ρ, φ, J/Ψ): use m_T scaling for the shape and meson to π⁰ ratio at high p_T for absolute normalization
- Semileptonic decays of open heavy flavor (c,b) simulated with PYTHIA and MC@NLO
 - Uncertainty in the charm cross-section and shape - PHENIX PRC 91, 014907 (2015)

Cocktail of hadronic sources

- Dielectron and Dalitz decay of mesons simulated with EXODUS
 - π⁰ parametrized using modified Haggedorn function
 - Other mesons(η, ω, ρ, φ, J/Ψ): use m_T scaling for the shape and meson to π⁰ ratio at high p_T for absolute normalization
- Semileptonic decays of open heavy flavor (c,b) simulated with PYTHIA and MC@NLO
 - Uncertainty in the charm cross-section and shape - PHENIX PRC 91, 014907 (2015)
 - \rightarrow PYTHIA cocktail and MC@NLO cocktail
- Normalization
 - In m_{ee} <0.1 GeV/c² and p_T/m_{ee} >5
 - Normalize to measured $\pi^0 + \eta + \text{direct } \gamma$

Simulating charm contributions

Uncertainty in the cross-section and shape depending on MC@NLO or PYTHIA:

- The cross-sections extracted from fit to dielectrons in d+Au in the intermediate mass region both models decribe the data well (PRC 91, 014907 (2015))
- The two models differ in extrapolation to lower invariant masses caused by their different charm p_t and opening angle distributions
- The difference is more significant in Au+Au collisions where cc and bb contributions scale with N_{coll} while the other contributions scale with N_{part}

Zimanyi School 2015

arXiv:1509.04667

Mihael Makek

Invariant mass spectra

Minimum bias

Invariant mass spectra

Minimum bias

Centrality dependence

Zimanyi School 2015

Integrated yields (LMR)

Low mass region

 $m_{ee} = 0.3-0.76 \text{ GeV}/c^2$

Data/cocktail in MB (±stat±syst± mod):
Pythia: 2.3±0.4±0.4±0.2
MC@NLO: 1.7±0.3±0.3±0.2
→ Compatible with STAR results: 1.76±0.06±0.26±0.33
PRC92 (2015)024912

Comparison to model (Min. Bias)

Dielectron excess well described by the model (R. Rapp):

- In-medium ρ broadening due to scatter off baryons in hadrons gas
- Little contribution from the QGP

Invariant p_T (Min. Bias)

□ Dielectron excess distributed over p_T

Comparison to model (Min. Bias)

Dielectron excess well described by the model (R. Rapp):

- In-medium ρ broadening due to scatter off baryons in hadrons gas
- Little contribution from the QGP

Comparison to model (centrality dependence)

Centrality dependence of the model consistent with

Integrated yields (IMR)

Intermediate mass region

Summary

- PHENIX provided a new measurement of dielectron invariant yields in Au+Au collisions at 200 GeV
- □ The new analysis with the HBD
 - Purity of the electron sample $\geq 95\%$
 - Background described qualitatively and quantitatively to an excellent level
 - Cocktail: uncertainty in the charm contribution (PYTHIA vs. MC@NLO)
- Results
 - LMR: enhancement consistent with in-medium rho broadening
 - IMR: room for a thermal source beyond the cocktail

Comparison to previous PHENIX analysis

- □ Hadron contamination: was 30%, now 5% in MB
- Signal sensitivity: a factor of ~3.5 improvement in 0.15-0.75
 GeV/c²
- Pair cuts: now stronger pair cuts fully remove detector correlations
- **Flow:** now included in the shape of the mixed BG
- e-h pairs: now subtracted
- □ Jets: oposite jets component now explicitly subtracted
- Background subtraction: all correlated components calculated and subtracted on absoulte terms

PHENIX Time-of-flight

- Time-of-flight information implemented for improved hadron rejection
 - EMCal (PbSc)
 - 3/4 of acceptance
 - σ=450 ps
 - ToF East
 - $\sim 1/8$ of acceptance
 - σ=150 ps

Electron identification with neural networks

- Use reconstructed parameters from RICH, EMCAL, HBD, ToF as NN inputs
- Train and monitor NNs using simulations
- Use separate neural networks for:
 - Hadron rejection
 - Conversion rejection
 - HBD double hit rejection
- □ Achieve electron sample purity for all centralities ≥95%
- Was ~70% in Run-4 with 1D eID cuts in MB collisions

Example: hadron rejection NN for 0-10% centrality

Dielectron invariant p_T (Min. Bias)

Invariant p_T yield in m_{ee}:
 0 - 0.1 GeV/c²
 0.3 - 0.76 GeV/c²
 1.2 - 2.8 GeV/c²

Systematic uncertainties

For Minium bias collisions

Component	Uncertainty
eID+occupancy	± 4%
Acceptance (time)	± 8%
Acceptance (data/MC)	± 4%
Combinat. backgr. (0-5 GeV/c²)	\pm 25% (at 0.6 GeV/c²)
Residual yield (0-0.08 GeV/c ²)	- 5% (at 0.08 GeV/c ²)
Residual yield (1-5 GeV/c ²)	- 15% (at 1.0 GeV/c²)

The Cocktail

- Hadron decays simulated in EXODUS
- □ Fit π^0 and π^{\pm} data p+p or Au+Au to modified Haggedorn function:

$$E\frac{d^{3}}{dp^{3}} = \frac{A}{(e^{-(ap_{T}+bp_{T}^{2})}+p_{T}/p_{0})^{n}}$$

for other mesons η, ω, ρ, φ, J/Ψ etc. use pion parametrization an<u>d replace</u>:

$$p_T \rightarrow \sqrt{p_T^2 + m^2 - m_{\pi^0}^2}$$

- Open heavy flavor (c,b) simulated with MC@NLO and PYTHIA
- The cocktail filtered through the PHENIX acceptance and smeared with detector resolution
- $\hfill J/\Psi$ from full detector MC, normalization: pp yield scaled by N_{coll} * R_{aa}

Relativistic Heavy Ion Collider

- Relativistic Heavy Ion Collider
- Circumference 3.8 km
- Two large experiments today: PHENIX and STAR
- Has collided various nuclei:
 p+p, p+Au, p+Al, d+Au,
 3He+Au, Cu+Cu, Cu+Au, Au+Au,
 U+U
- Flexible in beam energy up to: $\sqrt{s_{NN}}=200 \text{ GeV}$, for Au+Au $\sqrt{s}=500 \text{ GeV}$, for p+p

Like sign - background subtraction

• all bckg = relative acceptance corrected like-sign pairs

This method does not provide precision needed ($\sim 0.2\%$) for central Au+Au collisions \rightarrow go to component by component cubtraction

Mihael Makek

Zimanyi School 2015

The HBD: hadron blindness

 Hadron track multiplicity exceeds the electron multiplicity by a large factor – detector should be sensitive only to electrons

- a. Cherenkov light is formed only by e^+ or e^- , threshold for π is 4 GeV/c
- b. the detector is operated in reverse bias mode to repel the ionization charge from dE/dx

Parallel analysis

- Independent analysis to provide a consistency check
- Key differences are:
 - Different HBD reconstruction algorithm
 - eID with 1D cuts
 - Normalization of background components by simulateous fit to the like-sign spectra
- Features:
 - Electron purity $\sim 85\%$ in 0-10% cent.
 - Signal sensitivity in LMR ~0.5 compared to than the main analysis
- Result: consistent with the main analysis

