

LQCD: chiral transition happens at $T_c \approx 154$ MeV

What is deconfinement in QCD ? At what temperature does it happen

What is the nature of the deconfined matter ?

 \Rightarrow Fluctuations of conserved charges

Chemical freezout and fluctuations of conserved charges

Zimanyi School, December 7-11, 2015

QCD thermodynamics at non-zero chemical potential

Taylor expansion :

$$\frac{p(T,\mu_B,\mu_Q,\mu_S)}{T^4} = \sum_{i,j,k} \frac{1}{i!j!k!\dots} \chi^{BQS}_{ijk} \cdot \left(\frac{\mu_B}{T}\right)^i \cdot \left(\frac{\mu_Q}{T}\right)^j \cdot \left(\frac{\mu_s}{T}\right)^k \quad \text{hadronic}$$

$$\frac{p(T,\mu_u,\mu_d,\mu_s)}{T^4} = \sum_{i,j,k} \frac{1}{i!j!k!} \chi^{uds}_{ijk} \cdot \left(\frac{\mu_u}{T}\right)^i \cdot \left(\frac{\mu_d}{T}\right)^j \cdot \left(\frac{\mu_s}{T}\right)^k \quad \text{quark}$$

$$\chi^{abc}_{ijk} = T^{i+j+k} \frac{\partial^i}{\partial \mu^i_a} \frac{\partial^j}{\partial \mu^j_b} \frac{\partial^k}{\partial \mu^k_c} \frac{1}{VT^3} \ln Z(T,V,\mu_a,\mu_b,\mu_c)|_{\mu_a=\mu_b=\mu_c=0}$$

Taylor expansion coefficients give the fluctuations and correlations of conserved charges, e.g.

$$\chi_2^X = \chi_X = \frac{1}{VT^3} (\langle X^2 \rangle - \langle X \rangle^2) \qquad \qquad \chi_{11}^{XY} = \frac{1}{VT^3} (\langle XY \rangle - \langle X \rangle \langle Y \rangle)$$

information about carriers of the conserved charges (hadrons or quarks)

probes of deconfinement

Deconfinement : fluctuations of conserved charges

Deconfinement of strangeness

Partial pressure of strange hadrons in uncorrelated hadron gas:

$$P_{S} = \frac{p(T) - p_{S}=0(T)}{T^{4}} = M(T) \cosh\left(\frac{\mu_{S}}{T}\right) + B_{S=1}(T) \cosh\left(\frac{\mu_{B} - \mu_{S}}{T}\right) + B_{S=2}(T) \cosh\left(\frac{\mu_{B} - 2\mu_{S}}{T}\right) + B_{S=3}(T) \cosh\left(\frac{\mu_{B} - 3\mu_{S}}{T}\right)$$

$$v_{1} = \chi_{31}^{BS} - \chi_{11}^{BS}$$

$$v_{1} = \chi_{31}^{BS} - \chi_{11}^{BS}$$

$$v_{2} = \frac{1}{3} \left(\chi_{4}^{S} - \chi_{2}^{S}\right) - 2\chi_{13}^{BS} - 4\chi_{22}^{BS} - 2\chi_{31}^{BS}$$

$$should \text{ vanish !}$$

$$v_{1} \text{ and } v_{2} \text{ do vanish within errors}$$

$$u_{1} = \chi_{2}^{BS} - 4\chi_{22}^{BS} - 2\chi_{31}^{BS}$$

$$u_{2} = \frac{1}{3} \left(\chi_{4}^{S} - \chi_{2}^{S}\right) - 2\chi_{13}^{BS} - 4\chi_{22}^{BS} - 2\chi_{31}^{BS}$$

• v_1 and v_2 rapidly increase above the transition region, eventually reaching non-interacting quark gas values

Bazavov et al, PRL 111 (2013) 082301

Quark number fluctuations at high T

At high temperatures quark number fluctuations can be described by weak coupling approach due to asymptotic freedom of QCD

- Lattice results converge as the continuum limit is approached
- Good agreement between lattice and the weak coupling approach for 2nd and 4th order quark number fluctuations as well as for correlations

Bazavov et al, PRD88 (2013) 094021, Ding et at, PRD92 (2015) 074043

What about charm hadrons ?

The charm baryon spectrum is not well known (only few states in PDG), HRG works only if the "missing" states are included

Quasi-particle model for charm degrees of freedom

Charm dof are good quasi-particles at all T because $M_c >> T$ and Boltzmann approximation holds

$$p^{C}(T,\mu_{B},\mu_{c}) = p_{q}^{C}(T)\cosh(\hat{\mu}_{C} + \hat{\mu}_{B}/3) + p_{B}^{C}(T)\cosh(\hat{\mu}_{C} + \hat{\mu}_{B}) + p_{M}^{C}(T)\cosh(\hat{\mu}_{C})$$
$$\hat{\mu}_{X} = \mu_{X}/T$$
$$\hat{\mu}_{X} = \mu_{X}/T$$

Partial meson and baryon pressures described by HRG at T_c and dominate the charm pressure then drop gradually, charm quark only dominant dof at T>200 MeV

The freeze-out temperature in heavy ion collisions

Freeze-out temperature as function of baryon potential :

$$T_f(\mu_B) = T_{f,0} \left(1 - \kappa_2^f \bar{\mu}_B^2 - \kappa_4^f \bar{\mu}_B^4 \right) \qquad \bar{\mu}_B \equiv \mu_B / T_{f,0}$$

Bazavov et al, arXiV:1509.05786

- Hadron resonance gas (HRG) can describe various thermodynamic quantities at low temperatures
- Deconfinement transition can be studied in terms of fluctuations and correlations of conserved charges, it manifest itself as a abrupt breakdown of hadronic description that occurs around the chiral transition temperature
- Charm hadrons can exist above T_c and are dominant dof for T < 180 MeV
- For T > (300-400) MeV weak coupling expansion works well for certain quantities (e.g. quark number susceptibilities), more work is needed to establish the connection between the lattice and the weak coupling results
- Comparison of lattice and HRG results for certain charm correlations hints for existence of yet undiscovered excited baryons
- The freeze-out curve as function of baryon density can be determined from the the charge and baryon number fluctuations; the curvature of the freeze-out line is very small or even negative

Back-up slides

	STAR0.8	STAR2.0	PHENIX/STAR2.0
a_{12}	0.079(3)	0.087(2)	0.110(9)
C12	0.858(101)	0.329(74)	0.559(352)
$T_{f,0}$ [MeV]	145(2)	147(2)	155(4)
$c_{12}^0(T_{f,0})$	0.343(31)	0.326(32)	0.265(52)
$D_{12}(T_{f,0})$	7.04(44)	6.62(36)	5.27(78)
κ_2^f	-0.073(16)	-0.001(12)	-0.056(67)

No quarks carrying both strangeness and charm

 \Rightarrow non-zero pressures in this sector implies bound charm strange bound states

Charm-strange meson and baryon pressures are consisten with HRG at T_c

Quark mass effects cancel in the ratio