QCD Thermodynamics from Effective Field Theories

Chihiro Sasaki

Institute of Theoretical Physics, University of Wroclaw, Poland

Selected Issues:

- interplay between chiral symmetry breaking and confinement
- \bullet phases of hot/dense QCD
- fate of hadrons near the phase transition

What is the origin of matter?

- after EW phase transition: Standard Model (EM & Weak plus Strong int.)
- QCD phase transition is the last transition in the evolution of the Universe!

up, down quarks (~ 5 MeV): SM ingredients Where does the nucleon mass (~ 1 GeV) come from? 10 % from EW/Higgs, and 90 % from QCD!

- scale and confinement? from elementary particle to composite states?
 - \cdots fundamental issues in non-abelian gauge theories!

Baryons qqq and Antibaryons q̄q̄q̄ Baryons are fermionic hadrons. There are a few of the many types of baryons.						
Symbol	Name	Quark content	Electric charge	GeV/c ²	Spin	
р	proton	uud	1	0.938	1/2	
p	antiproton	ūūd	-1	0.938	1/2	
n	neutron	udd	0	0.940	1/2	
Λ	lambda	uds	0	1.116	1/2	
Ω-	omega	SSS	-1	1.672	3/2	
Mesons qq Mesons are bosonic hadrons There are a few of the many types of mesons.						
The	Meson re are a fev	w of the r	18 qq sonic hadr nany types	ons s of mesor	15.	
The Symbol	Meson re are a fev Name	v of the r Quark	IS qq sonic hadr nany types Electric charge	ons s of mesor GeV/c ²	ıs. Spin	
The Symbol π ⁺	Meson re are a fev Name pion	vof the r Quark content ud	IS qq sonic hadr nany types Electric charge +1	ons s of meson GeV/c ² 0.140	ıs. Spin 0	
The Symbol π+ K ⁻	Meson re are a fev Name pion kaon	v of the r Quark content ud sū	sonic hadr nany types Electric charge +1 -1	ons s of meson GeV/c ² 0.140 0.494	1S. Spin 0 0	
The Symbol π+ K ⁻ ρ+	Meson re are a fev Name pion kaon rho	v of the r Quark content ud sū ud	IS QQ sonic hadr nany types Electric charge +1 -1 +1	ons s of meson GeV/c ² 0.140 0.494 0.770	15. Spin 0 0 1	
The Symbol π+ K ⁻ ρ+ B ⁰	Meson re are a fev Name pion kaon rho B-zero	v of the r Quark content ud sū ud db	IS qq sonic hadr nany types Electric charge +1 -1 +1 0	ons s of mesor GeV/c ² 0.140 0.494 0.770 5.279	15. Spin 0 0 1 0	

 ~ 150

 ~ 200

- effective field theories:
 - "particles" contained: either fundamental or composite
 - $-\, {\rm based}$ on fundamental/emergent symmetries
 - broad spectrum of applications to QCD(-like), SM, BSM

Quantum Chromodynamics (QCD) underlies Hadron Physics

• theory of strong interaction among quarks (q) and gluons $(F_{\mu\nu})$

$$SU_{c}(3) : \mathcal{L} = \bar{q}_{f}^{a} \left(i\gamma_{\mu} D_{ab}^{\mu} - \delta_{ab} m_{f} \right) q_{f}^{b} - \frac{1}{4} F_{\mu\nu}^{\alpha} F_{\alpha}^{\mu\nu}$$

 $\textbf{colors} = (r\,,g\,,b) \text{ and flavors} = (u,d,s,c,b,t)$

$\begin{array}{l} \textbf{asymptotic freedom} \\ \Rightarrow \textbf{ color confinement} \end{array}$

- hadrons are "colorless": qqq, $\bar{q}q \sim SU(3)_c$ singlet
- exotic hadrons: tetraquarks $(\bar{q}\bar{q}qq)$, pentaquarks $(\bar{q}qqqq)$, dibaryons (qqqqqq), glueballs

QCD ground state in low energy/temperature/density

- color confinement: only $SU(3)_c$ singlet observed
- dynamical breaking of (approximate) SU(2)_f chiral symmetry: pions as NG bosons, no degenerate parity partners

changing external parameter(s): different ground state!

- * how are color-singlet states formed? exotic hadrons?
- * dynamical origin of hadronic interactions and masses?
- * composition of QCD matter at finite temperature/density?

I. Confinement vs. Dynamical Chiral symmetry Breaking

Chiral crossover at finite temperature

• chiral restoration in $N_f = 2$ QCD (massless quarks): O(4) universality class [Pisarski and Wilczek ('84)]

- confirmed by Lattice QCD simulations: also true in QCD with physical $m_{\pi}!$ [Karsch ('11), Bazavov et al., ('12)]
- chiral crossover in QCD governed by O(4)
 - important guide in building models
 - critical behaviors independent of models! universality

QCD thermodynamics at $\mu_q \simeq 0$ from lattice simulations

• deconfinement and SU(2) chiral restoration set in at $T_{\rm pc} \sim 155$ MeV.

 \hookrightarrow conserved charges

• fluct. of conserved charges with: $\mu = B\mu_B + S\mu_S + Q\mu_Q$

e.g. kurtosis of baryon number fluctuations

$$\kappa = \chi_4^B / \chi_2^B = B^2 \rightarrow \begin{cases} 1, & T \ll T_c \\ 1/9, & T \gg T_c \end{cases}$$
$$\chi_2^B = \partial^n (P/T^4) / \partial (\mu_D/T)^n$$

$$\chi_n = O(P/T)/O(\mu_B/T)$$

• Polyakov-loop sus. and their ratios:

a clear remnant of Z(3)in $R_A = \chi_{absolute}/\chi_{real}!$ [Lo et al. ('13)] cf. pure YM: exact Z(3), deconf p.t.

Confinement vs. dynamical chiral symmetry breaking (D χ **SB)** to which extent does D χ SB contain information on confinement?

• Banks-Casher relation: low-lying Dirac eigenmodes generate $\langle \bar{q}q \rangle$.

$$\langle \bar{q}q \rangle = -\lim_{m_q \to \infty} \lim_{V \to \infty} \pi \rho(0), \quad \rho(\lambda) = \frac{1}{V} \sum_n \langle \delta(\lambda - \lambda_n) \rangle$$

removal of low-lying Dirac modes \Rightarrow NO D χ SB Q. does confinement disappear simultaneously?

 linking Polyakov loop to spectral function of *lattice* Dirac operator [Gattringer ('06); Bruckmann, Gattringer, Hagen ('07); Synatschke, Wipf, Langfeld ('08)] manifestly gauge invariant formalism
 [Gongyo, Iritani, Suganuma ('12); Doi, Iritani, Suganuma ('13,14)]

NO particular Dirac-modes that crucially affect confinement! \downarrow disappearance of D χ SB DOES NOT mean deconfinement?

Fate of hadron masses toward chiral symmetry restoration

- hadron masses vs. truncation level on lattice [Glozman, Lang, Schrock ('12)]
 - removal of lowest Dirac-eigenmodes \Leftrightarrow NO $\langle \bar{q}q \rangle$
 - \Rightarrow parity partners degenerate *and* stay quite massive!
 - -no universal scaling $(m_{\text{meson}} \sim 2m, m_{\text{baryon}} \sim 3m)$ found \Rightarrow the system remains confined!
- LQCD at $\mu = 0$: $m_{N^-} \xrightarrow{T \to T_{ch}} m_{N^+} \sim m_{N^+}^{(vac)}$ [Aarts et al., ('15)]

at high density: $T_{\rm ch} \sim T_{\rm dec}$ or $T_{\rm ch} \neq T_{\rm dec}$?

Topology and confinement ['t Hooft (

['t Hooft ('75); Mandelstam ('76)]

QCD with Maximal Abelian Gauge (MAG) ['t Hooft ('81); Ezawa, Iwasaki ('82)] confinement and $D\chi$ SB induced by monopole condensation **How monopoles and Dirac zero modes are related?**

- instantons responsible for $D\chi$ SB, but not for conf. [Diakonov, Petrov ('86)] zero modes *localized*, difficult to yield confinement?
- SU(2) instantons and dyons: simultaneous transition [Larsen, Shuryak ('14,'15)] conf. and D χ SB induced by dyon-antidyon interactions
- is it so exotic if the two transitions happen separately? NO! cf. adjoint QCD, $T_{\rm ch} \sim 8T_{\rm dec}$

II. Nature of Hadronic Matter at High Density

How to suppress unphysical d.o.f. at T = 0? [Benic, Mishustin, CS ('15)]

• IR cutoff b: NJL, SD eq., AdS/QCD [Ebert, Feldmann, Reinhardt ('96); \cdots] $1/b \sim$ typical size of a hadron \Rightarrow modified FD distribution functions

$$n_q = \theta(\vec{p}^2 - b^2) f_q \,, \quad n_{N_{\pm}} = \theta(\alpha^2 b^2 - \vec{p}^2) f_{N_{\pm}} \,, \quad f_X = 1/1 + e^{\beta(E_X \mp \mu_X)}$$

- asymptotic behavior at high density: *non-int. quark gas, restored chiral symmetry* ⇒ density dep. IR cutoff, upper limit α_{max} = 2^{-1/3} ~ 0.8
- model setup: $\Omega = \sum_{X=N_{\pm},q} \Omega_X + V_{\sigma} + V_{\omega} + V_{\chi} + V_b$

$$V_b = -\frac{\kappa_b^2}{2}b^2 + \frac{\lambda_b}{4}b^4 \,.$$

parameter fixing: $(\kappa_b, \lambda_b) \leftarrow (\epsilon_{\text{vac}}, T_{\text{ch}})$ from lattice QCD

• deconfinement criteria

$$Y_{N_{+}} + Y_{N_{-}} = Y_q; \quad Y_{N_{\pm}} = \frac{\rho_{N_{\pm}}}{\rho_B}, \quad Y_q = \frac{1}{3}\frac{\rho_q}{\rho_B}$$

- quark-meson-nucleon hybrid model at T = 0 and large μ_B $\Rightarrow \rho_{ch}$ separated from ρ_{dec} α -dep.: $\Delta \rho_{cr} / \rho_0 \sim 4\text{-}12$
- \bullet decreasing $\Delta \rho_{\rm cr}(T)$ due to bosonic thermal fluctuations
- holographic QCD approach:
 - $-\log N_c$ limit
 - less parameters

Role of a tetraquark: more exotic phases

- symmetry breaking: $SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V \times Z_{N_f} \rightarrow SU(N_f)_V$ 2-quark state $\sigma \sim \bar{q}q$ and 4-quark state $\chi \sim (\bar{q}q)^2 + \bar{q}\bar{q}$ -qq
- 3 phases: baryon number flutc. χ_B becomes max. when $\langle \sigma \rangle \to 0$, whereas ch.sym. remains broken by $\langle \chi \rangle \neq 0$
- multiple critical points, the same universality class as the "ordinary" CP \Leftrightarrow different universality from anomaly induced CP [Hatsuda et al. (06-07)] $\therefore U(1)_B$ is broken in CFL phase.

• hadron mass spectra

phase I: $\sigma_0 \neq 0, \chi_0 \neq 0$	phase II: $\sigma_0 = 0, \chi_0 \neq 0$
$SU(2)_V$	$SU(2)_V \times (Z_2)_A$
$m_S \neq 0 , m_P = 0$	$m_S \neq m_P \neq 0 , m_{P'} = 0$
$m_V \neq m_A$	$m_V \neq m_A$
$m_{N^+} \neq m_{N^-}$	$m_{N^+}=m_{N^-}\neq 0$

phase I: $\sigma_0 \neq 0, \chi_0 \neq 0$	phase II: $\sigma_0 = 0, \chi_0 \neq 0$
$SU(3)_V$	$SU(3)_V \times (Z_3)_A$
$m_S \neq 0 , m_P = 0$	$m_S = m_P \neq 0, m_{P'} = 0$
$m_V \neq m_A$	$m_V \neq m_A$
$m_{N^+} \neq m_{N^-}$	$m_{N^+} = m_{N^-} \neq 0$

• $N_f = 2 + 1$: (non-strange) $m_S \neq m_P$ $m_{N^+} \simeq m_{N^-}$ (strange) $m_S \simeq m_P$ $m_{N^+} \simeq m_{N^-}$ \Rightarrow early onset of χ SR for the strange mesons and non-/strange baryons!

Toward QCD p.t.: more and more hadrons activated!

- role of higher-lying hadrons
 - -V/A spectra: importance of heavier states towards $T_{
 m ch}$ [Hohler, Rapp ('14)]
 - role of higher KK modes in open moose model [Son, Stephanov ('03)]
 correct high-energy behavior for current correlator
 - nuclear matter saturation in Walecka model density-dep. parameters: many-body effects integrated out

How to handle them?

- holographic QCD models: $1/N_c$ corrections?
- microscopic approach: lattice QCD, DS/FRG lattice ch. condensates at $\mu = 0$: *T*-dep. int. of charmed mesons $\Rightarrow D_s$ more sensitive to O(4) than kaons [CS ('14); CS, Redlich ('14)]
- 4d effective theories: higher resonances, careful treatment of broad resonances [Broniowski et al. ('15); Friman et al. ('15)]

Low-lying scalar states: σ and κ mesons ... broad!

- how to deal with broad resonances? [Broniowski et al. ('15); Friman et al. ('15)]
 - -S-wave $K\pi$ scattering ~ $\kappa(800), K^*(1430)$ resonances
 - break down of Breit-Wigner spectral function
 - S matrix approach: empirical $K\pi$ phase shift as *input* \Rightarrow consequences of the broad width for thermodynamics!
- fluctuations in LQCD: missing strange state? [Bazavov et al. ('14)] putting κ into HRG compatible with LGT!?... CAUTION! [Pok et at. ('15)]

Summary

• Dynamical chiral symmetry breaking vs. confinement

- various fluctuations: remnant of underlying symmetry
- why $T_{\rm ch}\simeq T_{\rm dec}$ at $\mu=0$?: PNJL/QM models, instanton-dyon picture
- not clear at high density: Dirac eigenmode expansion, model w/ IR cutoff, cf. adjoint QCD: $T_{\rm dec} \neq T_{\rm ch}$

Nature of hadrons near QCD phase transition

- $-\operatorname{exotic}$ phases at high density, new CPs, χ_B
- role of higher-lying hadrons
- careful treatment of broad resonances required
- $-\,{\rm the}$ problem of missing strange states unresolved

• Our goal: from hadrons to quarks and gluons

multifaceted studies of gauge dynamics guided by symmetry, topology, ideal limits AND available data from LQCD simulations and HIC