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Selected Issues:

• interplay between chiral symmetry breaking and confinement

• phases of hot/dense QCD

• fate of hadrons near the phase transition



What is the origin of matter?

• after EW phase transition: Standard Model (EM & Weak plus Strong int.)

• QCD phase transition is the last transition in the evolution of the Universe!

up, down quarks (∼ 5 MeV): SM ingredients
Where does the nucleon mass (∼ 1 GeV) come from?

10 % from EW/Higgs, and 90 % from QCD!



• scale and confinement? from elementary particle to composite states?
· · · fundamental issues in non-abelian gauge theories!
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∼ 200

• effective field theories:

– “particles” contained: either fundamental or composite

– based on fundamental/emergent symmetries

– broad spectrum of applications to QCD(-like), SM, BSM



Quantum Chromodynamics (QCD) underlies Hadron Physics

• theory of strong interaction among quarks (q) and gluons (Fµν)
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• hadrons are “colorless”: qqq , q̄q ∼
SU(3)c singlet

• exotic hadrons: tetraquarks (q̄q̄qq),
pentaquarks (q̄qqqq), dibaryons
(qqqqqq), glueballs



QCD ground state in low energy/temperature/density

• color confinement: only SU(3)c singlet observed

• dynamical breaking of (approximate) SU(2)f chiral symmetry:
pions as NG bosons, no degenerate parity partners

pion as NG boson

color confinement instantons

nuclear force

trace anomaly U(1)A anomaly

dynamical chiral symmetry breaking
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4
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changing external parameter(s): different ground state!

∗ how are color-singlet states formed? exotic hadrons?

∗ dynamical origin of hadronic interactions and masses?

∗ composition of QCD matter at finite temperature/density?



I. Confinement vs. Dynamical Chiral symmetry Breaking



Chiral crossover at finite temperature

• chiral restoration in Nf = 2 QCD (massless quarks): O(4) universality
class [Pisarski and Wilczek (’84)]
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• confirmed by Lattice QCD simulations:
also true in QCD with physical mπ! [Karsch (’11), Bazavov et al., (’12)]

• chiral crossover in QCD governed by O(4)

– important guide in building models

– critical behaviors independent of models! — universality



QCD thermodynamics at µq ' 0 from lattice simulations

• deconfinement and SU(2) chiral restoration set in at Tpc ∼ 155 MeV.

↪→ conserved charges ↪→ melting chiral condensate

• fluct. of conserved charges with:
µ = BµB + SµS + QµQ

e.g. kurtosis of baryon number fluctuations

κ = χB
4 /χB

2 = B2 →
{

1 , T ¿ Tc

1/9 , T À Tc
,

χB
n = ∂n(P/T 4)/∂(µB/T )n

• Polyakov-loop sus. and their ratios:
a clear remnant of Z(3)
in RA = χabsolute/χreal! [Lo et al. (’13)]

cf. pure YM: exact Z(3), deconf p.t.
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Confinement vs. dynamical chiral symmetry breaking (DχSB)

to which extent does DχSB contain information on confinement?

• Banks-Casher relation: low-lying Dirac eigenmodes generate 〈q̄q〉.
〈q̄q〉 = − lim

mq→∞
lim

V→∞
πρ(0) , ρ(λ) =

1

V

∑
n

〈δ(λ− λn)〉

removal of low-lying Dirac modes ⇒ NO DχSB
Q. does confinement disappear simultaneously?

• linking Polyakov loop to spectral function of lattice Dirac operator
[Gattringer (’06); Bruckmann, Gattringer, Hagen (’07); Synatschke, Wipf, Langfeld (’08)]

manifestly gauge invariant formalism
[Gongyo, Iritani, Suganuma (’12); Doi, Iritani, Suganuma (’13,14)]

NO particular Dirac-modes that crucially affect confinement!
⇓

disappearance of DχSB DOES NOT mean deconfinement?
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•Wilson loop, quark potential:
〈W 〉 ∝ e−σRT : slope parameter =
string tension ⇒ unchanged!

[Gongyo, Iritani, Suganuma (’12)]

• Polyakov loop susceptibilities unmodi-
fied

[Doi, Redlich, CS, Suganuma (’15)]



Fate of hadron masses toward chiral symmetry restoration
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• hadron masses vs. truncation level on lattice [Glozman, Lang, Schrock (’12)]

– removal of lowest Dirac-eigenmodes ⇔ NO 〈q̄q〉
⇒ parity partners degenerate and stay quite massive!

– no universal scaling (mmeson ∼ 2m, mbaryon ∼ 3m) found
⇒ the system remains confined!

• LQCD at µ = 0: mN−
T→Tch→ mN+ ∼ m

(vac)
N+ [Aarts et al., (’15) ]

at high density: Tch ∼ Tdec or Tch 6= Tdec?



Topology and confinement [’t Hooft (’75); Mandelstam (’76)]

QCD in MAG

monopole part "photon" part monopoles

confinement chiral SB

QCD with Maximal Abelian Gauge (MAG) [’t Hooft (’81); Ezawa, Iwasaki (’82)]

confinement and DχSB induced by monopole condensation
How monopoles and Dirac zero modes are related?

• instantons responsible for DχSB, but not for conf. [Diakonov, Petrov (’86)]

zero modes localized, difficult to yield confinement?

• SU(2) instantons and dyons: simultaneous transition [Larsen, Shuryak (’14,’15)]

conf. and DχSB induced by dyon-antidyon interactions

• is it so exotic if the two transitions happen separately?
NO! cf. adjoint QCD, Tch ∼ 8Tdec



II. Nature of Hadronic Matter at High Density



How to suppress unphysical d.o.f. at T = 0? [Benic, Mishustin, CS (’15)]

• IR cutoff b: NJL, SD eq., AdS/QCD [Ebert, Feldmann, Reinhardt (’96); · · · ]
1/b ∼ typical size of a hadron ⇒ modified FD distribution functions

nq = θ(~p2−b2)fq , nN± = θ(α2b2−~p2)fN± , fX = 1/1+eβ(EX∓µX) .

• asymptotic behavior at high density:
non-int. quark gas, restored chiral symmetry
⇒ density dep. IR cutoff, upper limit αmax = 2−1/3 ∼ 0.8

• model setup: Ω =
∑

X=N±,q ΩX + Vσ + Vω + Vχ + Vb

Vb = −κ2
b

2
b2 +

λb

4
b4 .

parameter fixing: (κb, λb) ← (εvac, Tch) from lattice QCD

• deconfinement criteria

YN+
+ YN− = Yq ; YN± =

ρN±
ρB

, Yq =
1

3

ρq

ρB
.



Phase diagram from effective theories
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• quark-meson-nucleon hybrid model at T = 0 and large µB
⇒ ρch separated from ρdec α-dep.: ∆ρcr/ρ0 ∼ 4-12

• decreasing ∆ρcr(T )
due to bosonic thermal fluctuations

• holographic QCD approach:

– large Nc limit

– less parameters

temp

LQCD

liquid-gas
ch.pot.

?



Role of a tetraquark: more exotic phases [Harada-CS-Takemoto (09)]
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• symmetry breaking: SU(Nf)L × SU(Nf)R → SU(Nf)V × ZNf
→ SU(Nf)V

2-quark state σ ∼ q̄q and 4-quark state χ ∼ (q̄q)2 + q̄q̄-qq

• 3 phases: baryon number flutc. χB becomes max. when 〈σ〉 → 0 ,
whereas ch.sym. remains broken by 〈χ〉 6= 0

• multiple critical points, the same universality class as the “ordinary” CP
⇔ different universality from anomaly induced CP [Hatsuda et al. (06-07)]

∵ U(1)B is broken in CFL phase.



• hadron mass spectra

phase I: σ0 6= 0 , χ0 6= 0 phase II: σ0 = 0 , χ0 6= 0

SU(2)V SU(2)V × (Z2)A
mS 6= 0 ,mP = 0 mS 6= mP 6= 0 ,mP ′ = 0
mV 6= mA mV 6= mA
mN+ 6= mN− mN+ = mN− 6= 0

phase I: σ0 6= 0 , χ0 6= 0 phase II: σ0 = 0 , χ0 6= 0

SU(3)V SU(3)V × (Z3)A
mS 6= 0 ,mP = 0 mS = mP 6= 0 ,mP ′ = 0
mV 6= mA mV 6= mA
mN+ 6= mN− mN+ = mN− 6= 0

• Nf = 2 + 1:
(non-strange) mS 6= mP mN+ ' mN−
(strange) mS ' mP mN+ ' mN−
⇒ early onset of χSR for the strange mesons and non-/strange baryons!



Toward QCD p.t.: more and more hadrons activated!

• role of higher-lying hadrons

– V/A spectra: importance of heavier states towards Tch [Hohler, Rapp (’14)]

– role of higher KK modes in open moose model [Son, Stephanov (’03)]

correct high-energy behavior for current correlator

– nuclear matter saturation in Walecka model
density-dep. parameters: many-body effects integrated out

How to handle them?

• holographic QCD models: 1/Nc corrections?

• microscopic approach: lattice QCD, DS/FRG
lattice ch. condensates at µ = 0: T -dep. int. of charmed mesons
⇒ Ds more sensitive to O(4) than kaons [CS (’14); CS, Redlich (’14)]

• 4d effective theories: higher resonances, careful treatment of broad reso-
nances [Broniowski et al. (’15); Friman et al. (’15)]



Low-lying scalar states: σ and κ mesons ... broad!

• how to deal with broad resonances? [Broniowski et al. (’15); Friman et al. (’15)]

– S-wave Kπ scattering ∼ κ(800), K∗(1430) resonances

– break down of Breit-Wigner spectral function

– S matrix approach: empirical Kπ phase shift as input
⇒ consequences of the broad width for thermodynamics!

• fluctuations in LQCD: missing strange state? [Bazavov et al. (’14)]

putting κ into HRG compatible with LGT!?... CAUTION! [Pok et at. (’15)]



Summary

•Dynamical chiral symmetry breaking vs. confinement

– various fluctuations: remnant of underlying symmetry

– why Tch ' Tdec at µ = 0?: PNJL/QM models, instanton-dyon picture

– not clear at high density: Dirac eigenmode expansion, model w/ IR
cutoff, cf. adjoint QCD: Tdec 6= Tch

•Nature of hadrons near QCD phase transition

– exotic phases at high density, new CPs, χB

– role of higher-lying hadrons

– careful treatment of broad resonances required

– the problem of missing strange states unresolved

•Our goal: from hadrons to quarks and gluons
multifaceted studies of gauge dynamics guided by symmetry, topology,
ideal limits AND available data from LQCD simulations and HIC


