Femtoscopy with kaons at the STAR experiment

Jindřich Lidrych for the STAR Collaboration Czech Technical University in Prague

15th Zimányi Winter school on heavy ion physics 7th - 11th December 2015

Outline

- Introduction into femtoscopy
- RHIC Beam Energy Scan and motivation for kaon femtoscopy
- Like-sign kaon femtoscopy for Beam Energy Scan
- Femtoscopy with unlike-sign kaons
- Conclusion

Femtoscopy

- Study source size and its dynamical properties shape and timescale of the emission zone
- Correlation function: $CF(p_1, p_2) = \int d^3 r S(r, k) |\psi_{1,2}(r, k)|^2$

Femtoscopy

$$CF(p_1, p_2) = \int d^3 r S(r, k) |\psi_{1,2}(r, k)|^2$$

$$r = x_1 - x_2$$
 $q_{inv} = p_1 - p_2 = 2k^*$

1D + identical non-interacting particles + assumption - source is parameterized by the Gaussian $CF(\vec{q}) = 1 \pm \lambda \exp(-q_{inv}^2 R_{inv}^2)$

3D - Longitudinal Co-Moving System (LCMS)

$$CF(\vec{q}) = 1 + \lambda \exp\left(-q_o^2 R_o^2 - q_s^2 R_s^2 - q_l^2 R_l^2\right)$$

Femtoscopy - what information can we obtain?

RHIC Beam Energy Scan (BES) and kaon femtoscopy for BES

RHIC Beam Energy Scan & Femtoscopy

- BES is one of the main physics program at the RHIC
- The goal of BES is study phase diagram of nuclear matter
 - Find the QCD critical point
 - 1st order phase transition signs
 - Turn-off of sQGP signatures

Femtoscopy for BES:

- Longer emission duration is expected in case of 1st order phase transition *Rischke & Gyulassy, nucl-th/9606039*
- Non-monotonicity $R_{out}^2 R_{side}^2$ may indicate changes in dynamics

Femtoscopy with kaons - a cleaner probe

In comparison with pions, there are following advantages:

- Less feed-down smaller contamination with non-primary kaons from weakly decaying resonances
- Smaller cross section information about a different stage of the collision evolution
- Kaons contain strange quark different production process if QGP is formed
- More difficult due to ~10x smaller statistics

Like-sign kaon femtoscopy for BES

1D femtoscopic analysis of charged kaons

Martin Girard from WUT

- 6 energies: 7.7, 11.5, 14.5, 19.6, 27, 39 GeV
- 2 centrality bins (0-30, 30-80%) and 2 k_T bins (0.2-0.4, 0.4-0.6 GeV/c)
- Fitting function: $CF(q_{inv}) = \left[(1 \lambda) + \lambda K(q_{inv})e^{-R_{inv}^2 q_{inv}^2} \right] \mathcal{N}$, where λ - correlation strength, $K(q_{inv})$ - Coulomb function and \mathcal{N} - normalization

Like-sign kaon femtoscopy for BES - results

- Extraction of source radii R_{inv} from 1D correlation function
- Source radii *R_{inv}* as function of energy 7.7, 11.5, 14.5, 19.6, 27, 39GeV
- No clear beam energy dependence visible

7th – 11th December 2015

Jindřich Lidrych

Femtoscopy with unlike-sign kaons at 200 GeV

Au+Au collisions at 200 GeV - data were recorded by the STAR in 2011
 larger available statistics + ToF for PID 0[∞]_{2.4}

Unlike-sign kaons

- Coulomb and strong final-state interaction (FSI)
- $\phi(1020)$ resonance: $k^* = 126 \text{ MeV}/c$, $\Gamma = 4.3 \text{ MeV}$

Use strong FSI in region of resonance: Lednicky: Phys.Part.Nucl. 40 (2009) 307-352 Pratt et al.: PRC 68 (2003) 054901

- More sensitive to source spatial extent than measurement at low q_{inv}
- Statistically advantageous

Unlike-sign 1D CF for Au+Au collisions at 200 GeV

Centrality dependence

• Significant dependence is observed in $\phi(1020)$ region (CF are integrated over k_T)

k_T dependence

• Significant dependence is observed in $\phi(1020)$ region for all centralities

$$q_{inv} = p_1 - p_2 = 2k^*$$

Unlike-sign 1D CF for Au+Au collisions at 200 GeV

Centrality dependence

CF(q_{inv})

1.6

1.4

• Significant dependence is observed in $\phi(1020)$ region (CF are integrated over k_T)

k_T dependence

• Significant dependence is observed in $\phi(1020)$ region for all centralities

• In order to compare experimental correlation function to theoretical predictions, extraction of kaon source radii R_{inv} and λ from fitting like-sign correlation function is needed

Kaon source parameters from K⁺K⁺ & K⁻K⁻ correlations

$\mathbf{K}^{+}\mathbf{K}^{+}$	K ⁻ K ⁻
▲ 0-5%	⊽ 0-5%
<mark>▲</mark> 5-10%	⊽ 5-10%
<mark>▲</mark> 10-30%	⊽ 10-30%
▲ 30-50%	⊽ 30-50%
<mark>▲ 50-75%</mark>	⊽ 50-75%

- λ and source size R_{inv} are extracted from fitting like-sign CF
- Uncertainty is dominated by systematic error, which is obtained by varying the fit range
- The source radii R_{inv} increase with the centrality and decrease with pair transverse momentum k_T

Jindřich Lidrych

Comparison of unlike-sign 1D correlation function to Lednicky model

Lednicky model includes the treatment of ϕ resonancedue to the FSI as well as generalized smoothnessapproximationLednicky: Phys.Part.Nucl. 40 (2009) 307-352

$$CF(p_1, p_2) = \int d^3 r S(r, k) |\psi_{1,2}(r, k)|^2$$

- Gaussian parameterization of source size source size R_{inv} is extracted from fitting like-sign correlation function
- The theoretical function is transformed to an experimental one via:

$$CF^{exp} = (CF^{theor} - 1)\lambda + 1,$$

in order to compare to an experimental correlation function, which is corrected for misidentification of kaons

Comparison of unlike-sign 1D correlation function to Lednicky model Centrality 0-5 %

 The Lednicky's model reproduces overall structure of the observed correlation function

^{7&}lt;sup>th</sup> – 11th December 2015

Jindřich Lidrych

Comparison of unlike-sign 1D correlation function to Lednicky model Centrality 5-10 %

• The Lednicky's model reproduces overall structure of the observed correlation function

Comparison of unlike-sign 1D correlation function to Lednicky model Centrality 10-30 %

The Lednicky's model reproduces overall structure of the observed correlation function, but model under predicts the strength of the correlation functions in the region of resonance for higher k_T

Comparison of unlike-sign 1D correlation function to Lednicky model Centrality 30-50 %

The Lednicky's model reproduces overall structure of the observed correlation function, but model under predicts the strength of the correlation functions in the region of resonance for higher k_T

7th – 11th December 2015

Comparison of unlike-sign 1D correlation function to Lednicky model Centrality 50-75 %

• The Lednicky's model reproduces overall structure of the observed correlation function, but model under predicts the strength of the correlation functions in the region of resonance

7th – 11th December 2015

Jindřich Lidrych

Summary

STAR results on kaon femtoscopy:

Like-sign kaon femtoscopy for RHIC Beam Energy Scan

• Extraction of source radii R_{inv} from 1D correlation function

Measurement of K⁺K⁻ correlations in Au+Au collisions at 200 GeV

- Strong centrality dependence in $\phi(1020)$ region
- k_T dependence in $\phi(1020)$ region
- Comparison of unlike-sign CF to Lednicky's model
 - The Lednicky's model reproduces overall structure of the observed correlation function
 - In the peripheral collisions the model under predicts the strength of the correlation functions in the region of resonance

Thank you for your attention

Back-up

Back-up: Experimental correlation function

Back-up: Kaon source imaging

 Au+Au collision at 200 GeV recorded in 2004 and 2007 - only TPC for PID

Source imaging - technique to obtain S(r, k) directly

• Numerical inversion of the equation

$$CF(p_1, p_2) = \int d^3 r S(r, k) |\psi_{1,2}(r, k)|^2$$

- advantageous: no assumptions for the shape of source
- challenges: statistics, no analytical solutions → some limitations and approximations
- Kaon source can be well described by Gaussian shape

7th – 11th December 2015