The origin of Cosmic Rays*

Stefano Gabici APC, Paris

* biased view of a gamma-ray astronomer

to ~EeV

from sub-GeV

The origin of CRs: energy requirement

The origin of CRs: energy requirement

The MeV domain (MeV...~1 GeV)

CR spectrum known with very large uncertainties in the MeV range

-> but see recent Voyager results

- test propagation models <GeV energies
- is the spectrum representative of the whole Galaxy?

MeV

GeV

TeV

PeV

EeV

ZeV

The MeV domain: CR ionization

(see 56 & Montmerle 2015, Padovani+ 2009 for recent reviews)

$$H_2 + CR \longrightarrow H_2^+ + e^-$$

The MeV domain: CR ionization

(see 56 & Montmerle 2015, Padovani+ 2009 for recent reviews)

The MeV domain: CR ionization

(see SG & Montmerle 2015, Padovani+ 2009 for recent reviews)

Vaupré, Hily-Blant, Ceccarelli, Dubus, SG, Montmerle (2014)

TeV + gas -> multi-TeV CR protons

Vaupré, Hily-Blant, Ceccarelli, Dubus, SG, Montmerle (2014)

TeV

PeV

EeV

ZeV

MeV

GeV

Vaupré, Hily-Blant, Ceccarelli, Dubus, SG, Montmerle (2014)

PeV

EeV

ZeV

TeV

MeV

GeV

Vaupré, Hily-Blant, Ceccarelli, Dubus, SG, Montmerle (2014)

Vaupré, Hily Plant, Ceccarelli, Dubus, SG, Montmerle (2014)

SuperNova Remnants & MeV cosmic rays

(for a review see SG & Montmerle 2015)

SuperNova Remnants & MeV cosmic rays

The GeV-TeV domain: gamma rays

TeV

PeV

EeV

ZeV

MeV

GeV

RXJ 1713

...or hadronic?

TeV

PeV

EeV

ZeV

MeV

GeV

see also Ellison+ 2010 for leptonic, Zirakashvili+ 2010, Fukui+2012 for hadronic

Do SNRs accelerate protons?

Do SNRs accelerate protons?

Do SNRs accelerate protons?

FERMI SNR catalogue and HESS survey

MeV GeV TeV PeV EeV ZeV

FERMI SNR catalogue and HESS survey

HESS: # of SNRs in Gal. plane survey is OK with expectations

Cristofari+ 2013

PAMELA, AMS 02

breaks in H and He spectra pf CRs

the breaks, unexpected, tell us something about the acceleration and/or propagation of CRs

PAMELA -> Adriani+ 2011, 2013 ::: AMS 02 -> Aguilar+ 2015

The PeV domain (100 TeV-10 PeV)

 $R_L(1 \text{ PeV}) \sim 0.36 \text{ pc}$

GeV EeV MeV TeV PeV ZeV

velocity velocity was criterium -> $E_{max} \approx u \; R \; B^{-}$ magnetic field

$$E_{max} \approx 1 \left(\frac{u}{1000 \text{ km/s}}\right) \left(\frac{R}{\text{pc}}\right) \left(\frac{B}{\mu \text{G}}\right) \text{ TeV}$$

MeV GeV EeV ZeV TeV PeV

velocity velocity was criterium ->
$$E_{max} \approx u \; R \; B^{\rm size}$$
 magnetic field

$$E_{max} \approx 1 \left(\frac{u}{1000 \text{ km/s}}\right) \left(\frac{R}{\text{pc}}\right) \left(\frac{B}{\mu \text{G}}\right) \text{ TeV}$$

MeV GeV EeV ZeV TeV PeV

B-field amplification

CR escape from SNRs

-> current driven (and self regulating!) plasma instability

TeV

PeV

EeV

ZeV

MeV

GeV

PeV

EeV

ZeV

TeV

MeV

GeV

Observational signature

p-p interactions ->
$$E^p_{max} \approx 1 \ \mathrm{PeV} \longrightarrow E^\gamma_{max} \approx 100 \ \mathrm{TeV}$$

inverse Compton-> suppressed in the multi-TeV domain (Klein-Nishina effect)

Observational signature

unattenuated y-ray spectrum extending to the multi-TeV domain

p-p interactions ->
$$E^p_{max} \approx 1 \ \mathrm{PeV} \longrightarrow E^\gamma_{max} \approx 100 \ \mathrm{TeV}$$

inverse Compton-> suppressed in the multi-TeV domain (Klein-Nishina effect)

Observational signature

MeV

unattenuated y-ray spectrum extending to the multi-TeV domain

EeV

ZeV

p-p interactions ->
$$E^p_{max} \approx 1 \ \mathrm{PeV} \longrightarrow E^\gamma_{max} \approx 100 \ \mathrm{TeV}$$

inverse Compton-> suppressed in the multi-TeV domain (Klein-Nishina effect)

PeV

TeV

GeV

Observational signature

unattenuated y-ray spectrum extending to the multi-TeV domain

H.E.S.S. Coll. 2016

p-p interactions ->
$$E^p_{max} \approx 1 \ \mathrm{PeV} \longrightarrow E^\gamma_{max} \approx 100 \ \mathrm{TeV}$$

inverse Compton-> suppressed in the multi-TeV domain (Klein-Nishina effect)

MeV GeV EeV ZeV TeV PeV

The GC ridge as seen 10 years ago

H.E.S.S. Coll. 2006

color scale \rightarrow γ -rays contours \rightarrow gas (CS)

MeV GeV TeV	PeV	EeV	ZeV	
-------------	-----	-----	-----	--

The GC ridge as seen 10 years ago

The GC ridge as seen 10 years ago

TeV

PeV

EeV

ZeV

MeV

GeV

MeV

GeV

TeV

PeV

EeV

ZeV

multi-source scenarios require excessive fine-tuning/unrealistic number of sources

Sgr A* is the best bet candidate source of PeV cosmic rays

MeV GeV TeV <mark>PeV</mark> EeV ZeV

Sgr A^* is the best bet candidate source of PeV cosmic rays

Sgr A^* is the best bet candidate source of PeV cosmic rays

Sgr A* is the best bet candidate source of PeV cosmic rays

Sgr A* is the best bet candidate source of PeV cosmic rays

speculation: if Sgr A* was more active in the past (and we know it was!), at the level ~10³⁹ erg/s -> could in principle explain all galactic CRs >10 TeV and IceCube neutrinos produced in a very large (few 100 kpc) galactic halo

MeV GeV TeV <mark>PeV</mark> EeV ZeV

The EeV domain (10¹⁶ eV-10¹⁹ eV)

Transition from Galactic to extra-galactic Cosmic Rays

The EeV domain (10¹⁶ eV-10¹⁹ eV)

Transition from Galactic to extra-galactic Cosmic Rays

TeV

PeV

EeV

ZeV

MeV

GeV

TeV

PeV

EeV

ZeV

MeV

GeV

TeV

PeV

EeV

ZeV

MeV

GeV

spectral suppression

Conclusions

- new view of the MeV domain -> Voyager 1 in interstellar space!
 plus indirect estimates from ionization rates in molecular clouds
- O GeV-TeV domain -> gamma ray astronomy domain -> test of the supernova remnant hypothesis for the origin of galactic cosmic rays. some puzzling spectral features in H and He spectra
- the first PeVatron detected in our Galaxy is NOT a SNR, but most likely the supermassive black hole in the galactic centre
- galactic to extragalactic transition at the ankle, possible scaling of Emax with Z (same rigidity)
- Suppression (GZK or Emax?) in the spectrum at 60 EeV, isotropy (keep an eye on Cen A), mixed composition -> who accelerates UHECRs?

Thank you.

