Recent Highlights from VERITAS.

Astronomy, Astrophysics, and Cosmology with $\gamma\text{-rays.}$

Henrike Fleischhack

VERITAS Collaboration 28th Rencontres de Blois 01.06.2016

Alliance for Astroparticle Physics

VERITAS

- Very Energetic Radiation Imaging Telescope Array System [Holder et al., 2008]
- > Sensitive to γ -rays from \sim 85 GeV to > 30 TeV.
- > Field of view 3.5°.
- > Upgrades since 2007:
 - 2009: Array layout optimized.
 - 2011: Trigger upgrade.
 - 2012: PMT upgrade; moonlight observations.

VERITAS camera without lightcones. Image credit: VERITAS; Gregory H. Revera

The Instrument

The Instrument

The Instrument

The $\gamma\text{-ray Sky}$

Image credit: NASA, ESA, J. Hester and A. Loll (ASU), Dubus [2013], Aurore Simonnet, http://tevcat.uchicago.edu

The $\gamma\text{-ray}$ Sky

Image credit: NASA, ESA, J. Hester and A. Loll (ASU), Dubus [2013], Aurore Simonnet, http://tevcat.uchicago.edu

Henrike Fleischhack | DESY Zeuthen | 01.06.2016 | page 4

... as seen by VERITAS

54 sources: 34 Active Galactic Nuclei, 1 Starburst Galaxy, 3 binary systems,4 Supernova Remnants, 4 Pulsar Wind Nebulae, 8 other/unidentified.

We Are Not Alone

We Are Not Alone

- Multi-wavelength, multi-messenger astronomy.
 Cooperation with many other observatories:
 - Coordinated campaigns.
 - Alerts about transient events.
 - Follow-up observations.

Image credit: https://astro.desy.de/; lceCube Collaboration; CallechiMIT/LIGO Lab; Jordanagoodman NASA E/PO, Sonoma State University, Aurore Simonnet

Gamma-ray Binaries

- > Only 5 binary systems are known emitters of VHE γ -rays.
- > Massive star + compact object (black hole or neutron star).
- > Orbital periods of days to months; orbital modulation of γ -ray emission.
- > Different models to explain the γ ray emission.

LS I 61+303

Fast variability and presence of 10-TeV-particles challenging for current models.

1. Constant

mage credit: Aurore Simonnet, Sonoma State University

Blazar physics:

- > Interaction of black holes with their environments, jet formation.
- > Sources of ultra-high energy cosmic rays?

Blazar physics:

- > Interaction of black holes with their environments, jet formation.
- > Sources of ultra-high energy cosmic rays?

Blazars as tools:

- > Cosmology (extra-galactic background light, inter-galactic magnetic field, ...).
- > New physics (searches for axions, LIV, ...).

Blazar physics:

- > Interaction of black holes with their environments, jet formation.
- > Sources of ultra-high energy cosmic rays?

Blazars as tools:

- > Cosmology (extra-galactic background light, inter-galactic magnetic field, ...).
- > New physics (searches for axions, LIV, ...).

Observing Strategies:

- > Variability on timescales from minutes too hours.
- > About 50% of observing time spent on blazars.
 - Discovery program.
 - Regular snapshots.
 - Target-of-Opportunity observations.
 - Deep exposures.

> MWL coverage when possible.

Blazar physics:

- > Interaction of black holes with their environments, jet formation.
- > Sources of ultra-high energy cosmic rays?

Blazars as tools:

- > Cosmology (extra-galactic background light, inter-galactic magnetic field, ...).
- > New physics (searches for axions, LIV, ...).

Observing Strategies:

- > Variability on timescales from minutes too hours.
- > About 50% of observing time spent on blazars.
 - Discovery program.
 - Regular snapshots.
 - Target-of-Opportunity observations.
 - Deep exposures.
- > MWL coverage when possible.

Upper limits from 113 non-detected blazars [Archambault et al., 2016b].

Image credit: Aurore Simonnet, Sonoma State University

PKS 1441+25, a blazar at *z* = 0.939

- Multi-wavelength flare in April 2015, VHE detection by MAGIC [Ahnen et al., 2015] and VERITAS [Abeysekara et al., 2015].
- > Single emission region, located $10^4 10^5$ Schwarzschild radii from black hole.

PKS 1441+25, a blazar at *z* = 0.939

- Multi-wavelength flare in April 2015, VHE detection by MAGIC [Ahnen et al., 2015] and VERITAS [Abeysekara et al., 2015].
- > Single emission region, located $10^4 10^5$ Schwarzschild radii from black hole.

Extra-galactic Background Light

- > Light emitted by stars, galaxies, dust since beginning of the universe.
- > Attenuation of VHE (E>100 GeV) gamma-rays: $\gamma_{\it VHE}\gamma_{\it EBL}$ ightarrow e^+e^-
- > $\left(\frac{\mathrm{d}N}{\mathrm{d}E}\right)_{obs} = \left(\frac{\mathrm{d}N}{\mathrm{d}E}\right)_{int} \cdot \exp\left(-\tau_{\gamma\gamma}(E,z)\right)$

> intrinsic spectrum from Fermi-LAT data.

Extra-galactic Background Light

- > Light emitted by stars, galaxies, dust since beginning of the universe.
- > Attenuation of VHE (E>100 GeV) gamma-rays: $\gamma_{\it VHE}\gamma_{\it EBL}$ ightarrow e^+e^-

>
$$\left(\frac{\mathrm{d}N}{\mathrm{d}E}\right)_{obs} = \left(\frac{\mathrm{d}N}{\mathrm{d}E}\right)_{int} \cdot \exp\left(-\tau_{\gamma\gamma}(E,z)\right)$$

> Search for γ -ray excess near 18 IceCube neutrino positions.

- > Search for γ -ray excess near 18 IceCube neutrino positions.
- > No excess found, upper limits 1% 10% of the flux of the Crab Nebula.

- > Search for γ -ray excess near 18 IceCube neutrino positions.
- > No excess found, upper limits 1% 10% of the flux of the Crab Nebula.
- > VERITAS results starting to constrain N=1000 scenario.

- > Search for γ -ray excess near 18 IceCube neutrino positions.
- > No excess found, upper limits 1% 10% of the flux of the Crab Nebula.
- > VERITAS results starting to constrain N=1000 scenario.
- > New: Real-time alerts from IceCube (not included here).

Conclusions...

W Comae

4C 21.35

 VERITAS running stable, improved through upgrades.
 Fruitful collaboration with other instruments.
 Rich datasets, deep observations.
 More to come soon: Cosmic ray physics

1ES 1215+303

Cosmology: EBL, IGMF

Dark matter

mage credit: M. Santander

S3 1227+25

Henrike Fleischhack | DESY Zeuthen | 01.06.2016 | page 14

... and Outlook

http://cta-psct.physics.ucla.edu/

Thank you for the attention

Backup.

- Abeysekara, A. U. et al. (2015). Gamma-Rays from the Quasar PKS 1441+25: Story of an Escape. *The Astrophysical Journal Letters*, 815(2):L22.
- Ahnen, M. L. et al. (2015). Very-high-energy gamma-rays from the Universe's middle age: detection of the z=0.940 blazar PKS 1441+25 with MAGIC. *Astrophys. J.*, 815(2):L23.
- Archambault, S. et al. (2016a). Exceptionally Bright TeV Flares from the Binary LS I +61 303. *The Astrophysical Journal Letters*, 817(1):L7.
- Archambault, S. et al. (2016b). Upper Limits from Five Years of Blazar Observations with the VERITAS Cherenkov Telescopes. *The Astronomical Journal*, 151(6):142.
- Dubus, G. (2013). Gamma-ray binaries and related systems. Astron. Astrophys. Rev., 21:64.
- Holder, J. et al. (2008). Status of the VERITAS Observatory. In American Institute of Physics Conference Series, volume 1085, pages 657–660.

